Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA.
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Bioinformatics. 2021 Dec 22;38(1):16-21. doi: 10.1093/bioinformatics/btab605.
The delicate balance of the microbiome is implicated in our health and is shaped by external factors, such as diet and xenobiotics. Therefore, understanding the role of the microbiome in linking external factors and our health conditions is crucial to translate microbiome research into therapeutic and preventative applications.
We introduced a sparse compositional mediation model for binary outcomes to estimate and test the mediation effects of the microbiome utilizing the compositional algebra defined in the simplex space and a linear zero-sum constraint on probit regression coefficients. For this model with the standard causal assumptions, we showed that both the causal direct and indirect effects are identifiable. We further developed a method for sensitivity analysis for the assumption of the no unmeasured confounding effects between the mediator and the outcome. We conducted extensive simulation studies to assess the performance of the proposed method and applied it to real microbiome data to study mediation effects of the microbiome on linking fat intake to overweight/obesity.
An R package can be downloaded from https://github.com/mbsohn/cmmb.
Supplementary files are available at Bioinformatics online.
微生物组的微妙平衡与我们的健康有关,并受到饮食和外源性物质等外部因素的影响。因此,了解微生物组在将微生物组研究转化为治疗和预防应用中的作用,对于将微生物组研究转化为治疗和预防应用至关重要。
我们引入了一个用于二元结果的稀疏组成中介模型,利用单形空间中定义的组成代数和概率回归系数上的线性零和约束来估计和测试微生物组的中介效应。对于具有标准因果假设的这种模型,我们表明因果直接和间接效应都是可识别的。我们进一步开发了一种用于对中介物和结果之间不存在未测量混杂的假设进行敏感性分析的方法。我们进行了广泛的模拟研究来评估所提出方法的性能,并将其应用于真实的微生物组数据,以研究微生物组在将脂肪摄入与超重/肥胖联系起来的中介作用。
可以从 https://github.com/mbsohn/cmmb 下载一个 R 包。
补充文件可在生物信息学在线获得。