Suppr超能文献

串联现场和实验室方法定量评估废水主导流中药物和药物转化产物的衰减机制。

Tandem field and laboratory approaches to quantify attenuation mechanisms of pharmaceutical and pharmaceutical transformation products in a wastewater effluent-dominated stream.

机构信息

Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States.

U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States.

出版信息

Water Res. 2021 Sep 15;203:117537. doi: 10.1016/j.watres.2021.117537. Epub 2021 Aug 10.

Abstract

Evolving complex mixtures of pharmaceuticals and transformation products in effluent-dominated streams pose potential impacts to aquatic species; thus, understanding the attenuation dynamics in the field and characterizing the prominent attenuation mechanisms of pharmaceuticals and their transformation products (TPs) is critical for hazard assessments. Herein, we determined the attenuation dynamics and the associated prominent mechanisms of pharmaceuticals and their corresponding TPs via a combined long-term field study and controlled laboratory experiments. For the field study, we quantified spatiotemporal exposure concentrations of five pharmaceuticals and six associated TPs in a small, temperate-region effluent-dominated stream during baseflow conditions where the wastewater plant was the main source of pharmaceuticals. We selected four sites (upstream, at, and two progressively downstream from effluent discharge) and collected water samples at 16 time points (64 samples in total, approximately twice monthly, depending on flows) for 1 year. Concurrently, we conducted photolysis, sorption, and biodegradation batch tests under controlled conditions to determine the major attenuation mechanisms. We observed 10-fold greater attenuation rates in the field compared to batch tests, demonstrating that connecting laboratory batch tests with field measurements to enhance predictive power is a critical need. Batch systems alone, often used for assessment, are useful for determining fate processes but poorly approximate in-stream attenuation kinetics. Sorption was the dominant attenuation process (t<7.7 d) for 5 of 11 compounds in the batch tests, while the other compounds (n = 6) persisted in the batch tests and along the 5.1 km stream reach. In-stream parent-to-product transformation was minimal. Differential attenuation contributed to the evolving pharmaceutical mixture and created changing exposure conditions with concomitant implications for aquatic and terrestrial biota. Tandem field and laboratory characterization can better inform modeling efforts for transport and risk assessments.

摘要

在以污水为主的水流中,不断演变的药物和转化产物的复杂混合物对水生生物构成潜在影响;因此,了解现场的衰减动态并对药物及其转化产物(TPs)的主要衰减机制进行特征描述,对于危害评估至关重要。在此,我们通过长期的现场研究和受控实验室实验相结合,确定了药物及其相应 TPs 的衰减动态和相关主要机制。在现场研究中,我们量化了在基流条件下,一个小型温带污水为主的水流中五种药物和六种相关 TPs 的时空暴露浓度,其中污水处理厂是药物的主要来源。我们选择了四个地点(上游、中间和两个从污水排放口逐渐下游),并在一年内 16 个时间点(总共 64 个样本,根据流量大约每月两次)采集水样。同时,我们在受控条件下进行了光解、吸附和生物降解批处理实验,以确定主要的衰减机制。我们发现现场的衰减率比批处理实验高 10 倍,这表明将实验室批处理实验与现场测量相结合以提高预测能力是一个关键需求。批处理系统通常用于评估,虽然对确定命运过程很有用,但却无法很好地近似现场衰减动力学。在批处理实验中,有 5 种化合物(占 11 种化合物中的 5 种)的吸附是主要的衰减过程(t<7.7 d),而其他化合物(n=6)在批处理实验和 5.1 公里的溪流段中仍然存在。在溪流中,母体到产物的转化很少。差异衰减导致了不断演变的药物混合物的形成,并创造了不断变化的暴露条件,这对水生和陆地生物群具有相应的影响。串联的现场和实验室特征描述可以更好地为运输和风险评估的建模工作提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验