Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
Sci Adv. 2021 Aug 20;7(34). doi: 10.1126/sciadv.abh1275. Print 2021 Aug.
Genome-wide loss-of-function screens have revealed genes essential for cancer cell proliferation, called cancer dependencies. It remains challenging to link cancer dependencies to the molecular compositions of cancer cells or to unscreened cell lines and further to tumors. Here, we present DeepDEP, a deep learning model that predicts cancer dependencies using integrative genomic profiles. It uses a unique unsupervised pretraining that captures unlabeled tumor genomic representations to improve the learning of cancer dependencies. We demonstrated DeepDEP's improvement over conventional machine learning methods and validated the performance with three independent datasets. By systematic model interpretations, we extended the current dependency maps with functional characterizations of dependencies and a proof-of-concept in silico assay of synthetic essentiality. We applied DeepDEP to pan-cancer tumor genomics and built the first pan-cancer synthetic dependency map of 8000 tumors with clinical relevance. In summary, DeepDEP is a novel tool for investigating cancer dependency with rapidly growing genomic resources.
全基因组功能丧失筛选揭示了肿瘤细胞增殖所必需的基因,称为癌症依赖性。将癌症依赖性与肿瘤细胞的分子成分或未经筛选的细胞系联系起来,进而与肿瘤联系起来仍然具有挑战性。在这里,我们提出了 DeepDEP,这是一种使用整合基因组特征预测癌症依赖性的深度学习模型。它使用独特的无监督预训练来捕获未标记的肿瘤基因组表示,以提高癌症依赖性的学习能力。我们证明了 DeepDEP 优于传统机器学习方法,并使用三个独立数据集验证了其性能。通过系统的模型解释,我们扩展了当前的依赖性图谱,增加了依赖性的功能特征,并对合成必需性进行了概念验证的计算机模拟检测。我们将 DeepDEP 应用于泛癌肿瘤基因组学,并构建了具有临床相关性的 8000 个肿瘤的首个泛癌合成依赖性图谱。总之,DeepDEP 是一种利用不断增长的基因组资源研究癌症依赖性的新工具。