Suppr超能文献

行动缓慢的螃蟹——基因组却很快:甲壳动物线粒体基因组的偏斜程度与运动能力有关。

Slow crabs - fast genomes: Locomotory capacity predicts skew magnitude in crustacean mitogenomes.

机构信息

State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China.

Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

出版信息

Mol Ecol. 2021 Nov;30(21):5488-5502. doi: 10.1111/mec.16138. Epub 2021 Sep 3.

Abstract

Base composition skews (G-C/G+C) of mitochondrial genomes are believed to be primarily driven by mutational pressure, which is positively correlated with metabolic rate. In marine animals, metabolic rate is also positively correlated with locomotory capacity. Given the central role of mitochondria in energy metabolism, we hypothesised that selection for locomotory capacity should be positively correlated with the strength of purifying selection (dN/dS), and thus be negatively correlated with the skew magnitude. Therefore, these two models assume diametrically opposite associations between the metabolic rate and skew magnitude: positive correlation in the prevailing paradigm, and negative in our working hypothesis. We examined correlations between the skew magnitude, metabolic rate, locomotory capacity, and several other variables previously associated with mitochondrial evolution on 287 crustacean mitogenomes. Weakly locomotory taxa had higher skew magnitude and ω (dN/dS) values, but not the gene order rearrangement rate. Skew and ω magnitudes were correlated. Multilevel regression analyses indicated that three competing variables, body size, gene order rearrangement rate, and effective population size, had negligible impacts on the skew magnitude. In most crustacean lineages selection for locomotory capacity appears to be the primary factor determining the skew magnitude. Contrary to the prevailing paradigm, this implies that adaptive selection outweighs nonadaptive selection (mutation pressure) in crustaceans. However, we found indications that effective population size (nonadaptive factor) may outweigh the impact of locomotory capacity in sessile crustaceans (Thecostraca). In conclusion, skew magnitude is a product of the interplay between adaptive and nonadaptive factors, the balance of which varies among lineages.

摘要

线粒体基因组的碱基组成偏向(G-C/G+C)主要归因于突变压力,而突变压力与代谢率呈正相关。在海洋动物中,代谢率也与运动能力呈正相关。鉴于线粒体在能量代谢中的核心作用,我们假设运动能力的选择应该与纯化选择(dN/dS)的强度呈正相关,因此与偏向幅度呈负相关。因此,这两个模型假设代谢率和偏向幅度之间存在截然相反的关联:在流行范式中呈正相关,而在我们的工作假设中呈负相关。我们检查了 287 个甲壳动物线粒体基因组中偏向幅度、代谢率、运动能力以及与线粒体进化相关的其他几个变量之间的相关性。运动能力较弱的类群具有更高的偏向幅度和 ω(dN/dS)值,但基因排序重排率较低。偏向和 ω 幅度呈相关关系。多层次回归分析表明,三个竞争变量,即体型、基因排序重排率和有效种群大小,对偏向幅度的影响可以忽略不计。在大多数甲壳动物谱系中,运动能力的选择似乎是决定偏向幅度的主要因素。与流行的范式相反,这意味着在甲壳动物中,适应性选择超过了非适应性选择(突变压力)。然而,我们发现有迹象表明,有效种群大小(非适应性因素)可能在固着甲壳动物(Thecostraca)中超过运动能力的影响。总之,偏向幅度是适应性和非适应性因素相互作用的产物,其平衡在不同的谱系中有所不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验