Dermatology Department, McGill University, Montreal, Quebec, Canada.
Dermatology Department, Hospital Universitario de Salamanca, Salamanca, Spain.
Skin Res Technol. 2022 Jan;28(1):35-39. doi: 10.1111/srt.13086. Epub 2021 Aug 22.
Deep-learning algorithms (DLAs) have been used in artificial intelligence aided ultrasonography diagnosis of thyroid and breast lesions. However, its use has not been described in the case of dermatologic ultrasound lesions. Our purpose was to train a DLA to discriminate benign form malignant lesions in dermatologic ultrasound images.
We trained a prebuilt neural network architecture (EfficientNet B4) in a commercial artificial intelligence platform (Peltarion, Stockholm, Sweden) with 235 color Doppler images of both benign and malignant ultrasound images of 235 excised and histologically confirmed skin lesions (84.3% training, 15.7% validation). An additional 35 test images were used for testing the algorithm discrimination for correct benign/malignant diagnosis. One dermatologist with more than 5 years of experience in dermatologic ultrasound blindly evaluated the same 35 test images for malignancy or benignity.
EfficientNet B4 trained dermatologic ultrasound algorithm sensitivity; specificity; predictive positive values, and predicted negative values for validation algorithm were 0.8, 0.86, 0.86, and 0.8, respectively for malignancy diagnosis. When tested with 35 previously unevaluated images sets, the algorithm´s accuracy for correct benign/malignant diagnosis was 77.1%, not statistically significantly different from the dermatologist's evaluation (74.1%).
An adequately trained algorithm, even with a limited number of images, is at least as accurate as a dermatologic-ultrasound experienced dermatologist in the evaluation of benignity/malignancy of ultrasound skin tumor images devoid of clinical data.
深度学习算法(DLAs)已被应用于人工智能辅助甲状腺和乳腺病变的超声诊断。然而,在皮肤科超声病变的情况下,其应用尚未被描述。我们的目的是训练一个 DLA 来区分皮肤科超声图像中的良性和恶性病变。
我们在一个商业人工智能平台(Peltarion,斯德哥尔摩,瑞典)中使用 235 个良性和恶性超声图像(84.3%训练,15.7%验证)训练了一个预先构建的神经网络架构(EfficientNet B4)。另外使用 35 个测试图像来测试算法对正确的良性/恶性诊断的区分能力。一位具有超过 5 年皮肤科超声经验的皮肤科医生对相同的 35 个测试图像进行了恶性或良性的盲法评估。
EfficientNet B4 训练的皮肤科超声算法在验证算法中的灵敏度、特异性、预测阳性值和预测阴性值分别为 0.8、0.86、0.86 和 0.8,用于恶性诊断。当用 35 个以前未评估的图像集进行测试时,算法对正确的良性/恶性诊断的准确率为 77.1%,与皮肤科医生的评估(74.1%)无统计学差异。
即使使用有限数量的图像,经过充分训练的算法在评估无临床数据的皮肤肿瘤超声图像的良性/恶性方面至少与具有皮肤科超声经验的皮肤科医生一样准确。