IEEE/ACM Trans Comput Biol Bioinform. 2022 Sep-Oct;19(5):2613-2622. doi: 10.1109/TCBB.2021.3106939. Epub 2022 Oct 10.
To quantitatively determining the temporal ordering of abnormal age onsets (AAO) among various biomarkers for Alzheimer's disease (AD), we introduced a computational Monte-Carlo simulation (CMCS) to statistically examine such ordering of an AAO pair or over all AAOs. The CMCS 1) simulates longitudinal data, estimates AAO for each iteration, and finally assesses the type-I error of an AAO pair or all AAO ordering. Using hippocampus volume (V), cerebral glucose hypometabolic convergence index (HCI), plasma neurofilament light (NfL), mini-mental state exam (MMSE), the auditory verbal learning test-long term memory (AVLT-LTM), short term memory (AVLT-STM) and clinical-dementia rating sum of box scale (CDR-SOB) from 382 mild cognitive impairment converters and non-converters, the CMCS estimated type-I error for the earlier AAO of V, AVLT_STM and AVLT_LTM each than MMSE was significant (p<0.002). The type-I error for the overall AAO temporal ordering of V ≤ AVLT_STM ≤ AVLT_LTM < HCI ≤ MMSE ≤ CDR-SOB ≤ NfL was p = 0.012. These findings showed that our CMCS is capable of providing statistical inferences for quantifying AAO ordering which has important implications in advancing our understanding of AD.
为了定量确定阿尔茨海默病(AD)各种生物标志物的异常起始年龄(AAO)的时间顺序,我们引入了一种计算蒙特卡罗模拟(CMCS)来对 AAO 对或所有 AAO 的排序进行统计检验。CMCS 1)模拟纵向数据,为每个迭代估计 AAO,最后评估 AAO 对或所有 AAO 排序的Ⅰ类错误。使用海马体积(V)、脑葡萄糖代谢收敛指数(HCI)、血浆神经丝轻链(NfL)、简易精神状态检查(MMSE)、听觉言语学习测验-长时记忆(AVLT-LTM)、短时记忆(AVLT-STM)和临床痴呆评定量表总盒评分(CDR-SOB)对 382 名轻度认知障碍转化者和非转化者进行分析,CMCS 估计 V、AVLT-STM 和 AVLT-LTM 每个比 MMSE 更早的 AAO 的Ⅰ类错误均有显著差异(p<0.002)。V ≤ AVLT-STM ≤ AVLT-LTM < HCI ≤ MMSE ≤ CDR-SOB ≤ NfL 的总体 AAO 时间顺序的Ⅰ类错误为 p = 0.012。这些发现表明,我们的 CMCS 能够提供用于量化 AAO 排序的统计推断,这对深入了解 AD 具有重要意义。