Suppr超能文献

评估用于图像分类教学工具的口腔病变图像的分类一致性。

Evaluating Classification Consistency of Oral Lesion Images for Use in an Image Classification Teaching Tool.

作者信息

Shen Yuxin, Yoon Minn N, Ortiz Silvia, Friesen Reid, Lai Hollis

机构信息

Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada.

出版信息

Dent J (Basel). 2021 Aug 12;9(8):94. doi: 10.3390/dj9080094.

Abstract

A web-based image classification tool (DiLearn) was developed to facilitate active learning in the oral health profession. Students engage with oral lesion images using swipe gestures to classify each image into pre-determined categories (e.g., left for refer and right for no intervention). To assemble the training modules and to provide feedback to students, DiLearn requires each oral lesion image to be classified, with various features displayed in the image. The collection of accurate meta-information is a crucial step for enabling the self-directed active learning approach taken in DiLearn. The purpose of this study is to evaluate the classification consistency of features in oral lesion images by experts and students for use in the learning tool. Twenty oral lesion images from DiLearn's image bank were classified by three oral lesion experts and two senior dental hygiene students using the same rubric containing eight features. Classification agreement among and between raters were evaluated using Fleiss' and Cohen's Kappa. Classification agreement among the three experts ranged from identical (Fleiss' Kappa = 1) for "clinical action", to slight agreement for "border regularity" (Fleiss' Kappa = 0.136), with the majority of categories having fair to moderate agreement (Fleiss' Kappa = 0.332-0.545). Inclusion of the two student raters with the experts yielded fair to moderate overall classification agreement (Fleiss' Kappa = 0.224-0.554), with the exception of "morphology". The feature of clinical action could be accurately classified, while other anatomical features indirectly related to diagnosis had a lower classification consistency. The findings suggest that one oral lesion expert or two student raters can provide fairly consistent meta-information for selected categories of features implicated in the creation of image classification tasks in DiLearn.

摘要

开发了一种基于网络的图像分类工具(DiLearn),以促进口腔健康专业的主动学习。学生通过滑动手势与口腔病变图像互动,将每张图像分类到预先确定的类别中(例如,向左表示转诊,向右表示无需干预)。为了组装训练模块并向学生提供反馈,DiLearn要求对每张口腔病变图像进行分类,并在图像中显示各种特征。收集准确的元信息是实现DiLearn中采用的自主式主动学习方法的关键步骤。本研究的目的是评估专家和学生对口腔病变图像特征的分类一致性,以供学习工具使用。来自DiLearn图像库的20张口腔病变图像由三名口腔病变专家和两名高级口腔卫生专业学生使用包含八个特征的相同评分标准进行分类。使用Fleiss'和Cohen's Kappa评估评分者之间以及评分者内部的分类一致性。三位专家之间的分类一致性范围从“临床行动”的完全一致(Fleiss' Kappa = 1)到“边界规则性”的轻微一致(Fleiss' Kappa = 0.136),大多数类别具有中等至良好的一致性(Fleiss' Kappa = 0.332 - 0.545)。将两名学生评分者与专家一起纳入后,总体分类一致性为中等至良好(Fleiss' Kappa = 0.224 - 0.554),“形态学”除外。临床行动特征可以准确分类,而其他与诊断间接相关的解剖学特征的分类一致性较低。研究结果表明,一名口腔病变专家或两名学生评分者可以为DiLearn中图像分类任务创建所涉及的选定特征类别提供相当一致的元信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da89/8392708/2d0cbb7a8e72/dentistry-09-00094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验