Suppr超能文献

使用长短期记忆架构对扩散相关光谱中的血流指数进行量化。

Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture.

作者信息

Li Zhe, Ge Qisi, Feng Jinchao, Jia Kebin, Zhao Jing

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

Beijing Laboratory of Advanced Information Networks, Beijing 100124, China.

出版信息

Biomed Opt Express. 2021 Jun 15;12(7):4131-4146. doi: 10.1364/BOE.423777. eCollection 2021 Jul 1.

Abstract

Diffuse correlation spectroscopy (DCS) is a noninvasive technique that derives blood flow information from measurements of the temporal intensity fluctuations of multiply scattered light. Blood flow index (BFI) and especially its variation was demonstrated to be approximately proportional to absolute blood flow. We investigated and assessed the utility of a long short-term memory (LSTM) architecture for quantification of BFI in DCS. Phantom and experiments were established to measure normalized intensity autocorrelation function data. Improved accuracy and faster computational time were gained by the proposed LSTM architecture. The results support the notion of using proposed LSTM architecture for quantification of BFI in DCS. This approach would be especially useful for continuous real-time monitoring of blood flow.

摘要

扩散相关光谱法(DCS)是一种非侵入性技术,它通过测量多次散射光的时间强度波动来获取血流信息。血流指数(BFI),尤其是其变化,被证明与绝对血流大致成正比。我们研究并评估了长短期记忆(LSTM)架构在DCS中量化BFI的效用。建立了模型和实验来测量归一化强度自相关函数数据。所提出的LSTM架构提高了准确性并缩短了计算时间。结果支持在DCS中使用所提出的LSTM架构来量化BFI的观点。这种方法对于血流的连续实时监测将特别有用。

相似文献

1
Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture.
Biomed Opt Express. 2021 Jun 15;12(7):4131-4146. doi: 10.1364/BOE.423777. eCollection 2021 Jul 1.
2
Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
J Biomed Opt. 2024 Jan;29(1):015004. doi: 10.1117/1.JBO.29.1.015004. Epub 2024 Jan 27.
3
Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles.
J Appl Physiol (1985). 2019 Nov 1;127(5):1328-1337. doi: 10.1152/japplphysiol.00324.2019. Epub 2019 Sep 12.
5
A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA.
Biosensors (Basel). 2024 Aug 8;14(8):384. doi: 10.3390/bios14080384.
6
Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
J Biomed Opt. 2020 Sep;25(9). doi: 10.1117/1.JBO.25.9.097003.
7
Time-domain diffuse correlation spectroscopy.
Optica. 2016 Sep;3(9):1006-1013. doi: 10.1364/OPTICA.3.001006. Epub 2016 Sep 6.
8
Approaches to denoise the diffuse optical signals for tissue blood flow measurement.
Biomed Opt Express. 2018 Nov 12;9(12):6170-6185. doi: 10.1364/BOE.9.006170. eCollection 2018 Dec 1.
10
Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults.
Neurophotonics. 2018 Oct;5(4):045006. doi: 10.1117/1.NPh.5.4.045006. Epub 2018 Nov 23.

引用本文的文献

2
Continuous noninvasive blood pressure estimation using tissue blood flow measured by diffuse correlation spectroscopy.
APL Bioeng. 2025 Jul 21;9(3):036106. doi: 10.1063/5.0266243. eCollection 2025 Sep.
3
Fast blood flow index reconstruction of diffuse correlation spectroscopy using a back-propagation-free data-driven algorithm.
Biomed Opt Express. 2025 Feb 26;16(3):1254-1269. doi: 10.1364/BOE.549363. eCollection 2025 Mar 1.
4
Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
J Biomed Opt. 2024 Jan;29(1):015004. doi: 10.1117/1.JBO.29.1.015004. Epub 2024 Jan 27.
5
Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy.
Biomed Opt Express. 2023 Sep 21;14(10):5358-5375. doi: 10.1364/BOE.498693. eCollection 2023 Oct 1.
7
FPGA Correlator for Applications in Embedded Smart Devices.
Biosensors (Basel). 2022 Apr 12;12(4):236. doi: 10.3390/bios12040236.

本文引用的文献

1
Collimating micro-lens fiber array for noncontact near-infrared diffuse correlation tomography.
Biomed Opt Express. 2021 Feb 17;12(3):1467-1481. doi: 10.1364/BOE.413734. eCollection 2021 Mar 1.
3
Deep learning model for ultrafast quantification of blood flow in diffuse correlation spectroscopy.
Biomed Opt Express. 2020 Sep 14;11(10):5557-5564. doi: 10.1364/BOE.402508. eCollection 2020 Oct 1.
4
A case report of mania with abnormal cerebral blood flow and cognitive impairment 24 years after head trauma.
Ann Gen Psychiatry. 2020 May 12;19:32. doi: 10.1186/s12991-020-00282-7. eCollection 2020.
5
Alternate approach to stroke phenotyping identifies a genetic risk locus for small vessel stroke.
Eur J Hum Genet. 2020 Jul;28(7):963-972. doi: 10.1038/s41431-020-0580-5. Epub 2020 Feb 11.
6
Joint and Long Short-Term Memory Regression of Clinical Scores for Alzheimer's Disease Using Longitudinal Data.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:281-284. doi: 10.1109/EMBC.2019.8857827.
7
Dynamic Blood-Brain Barrier Regulation in Mild Traumatic Brain Injury.
J Neurotrauma. 2020 Jan 15;37(2):347-356. doi: 10.1089/neu.2019.6483. Epub 2019 Nov 8.
8
A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures.
Neural Comput. 2019 Jul;31(7):1235-1270. doi: 10.1162/neco_a_01199. Epub 2019 May 21.
9
Approaches to denoise the diffuse optical signals for tissue blood flow measurement.
Biomed Opt Express. 2018 Nov 12;9(12):6170-6185. doi: 10.1364/BOE.9.006170. eCollection 2018 Dec 1.
10
Early microvascular cerebral blood flow response to head-of-bed elevation is related to outcome in acute ischemic stroke.
J Neurol. 2019 Apr;266(4):990-997. doi: 10.1007/s00415-019-09226-y. Epub 2019 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验