Suppr超能文献

混合攻击下随机复杂动态网络的事件触发递归状态估计

Event-Triggered Recursive State Estimation for Stochastic Complex Dynamical Networks Under Hybrid Attacks.

作者信息

Chen Yun, Meng Xueyang, Wang Zidong, Dong Hongli

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Mar;34(3):1465-1477. doi: 10.1109/TNNLS.2021.3105409. Epub 2023 Feb 28.

Abstract

In this article, the event-based recursive state estimation problem is investigated for a class of stochastic complex dynamical networks under cyberattacks. A hybrid cyberattack model is introduced to take into account both the randomly occurring deception attack and the randomly occurring denial-of-service attack. For the sake of reducing the transmission rate and mitigating the network burden, the event-triggered mechanism is employed under which the measurement output is transmitted to the estimator only when a preset condition is satisfied. An upper bound on the estimation error covariance on each node is first derived through solving two coupled Riccati-like difference equations. Then, the desired estimator gain matrix is recursively acquired that minimizes such an upper bound. Using the stochastic analysis theory, the estimation error is proven to be stochastically bounded with probability 1. Finally, an illustrative example is provided to verify the effectiveness of the developed estimator design method.

摘要

本文研究了一类遭受网络攻击的随机复杂动态网络基于事件的递归状态估计问题。引入了一种混合网络攻击模型,以同时考虑随机发生的欺骗攻击和随机发生的拒绝服务攻击。为了降低传输速率并减轻网络负担,采用了事件触发机制,在该机制下,只有当预设条件满足时,测量输出才会传输到估计器。首先通过求解两个耦合的类Riccati差分方程,推导了每个节点上估计误差协方差的上界。然后,递归获得所需的估计器增益矩阵,以使该上界最小化。利用随机分析理论,证明了估计误差以概率1随机有界。最后,给出了一个示例,以验证所提出的估计器设计方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验