Suppr超能文献

人工智能和人工神经网络在脊柱外科中的诊断和预后价值:叙述性综述。

The diagnostic and prognostic value of artificial intelligence and artificial neural networks in spinal surgery : a narrative review.

机构信息

School of Medicine, Royal College of Surgeons Ireland, Dublin, Ireland.

National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland.

出版信息

Bone Joint J. 2021 Sep;103-B(9):1442-1448. doi: 10.1302/0301-620X.103B9.BJJ-2021-0192.R1.

Abstract

In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks. Cite this article:  2021;103-B(9):1442-1448.

摘要

近年来,机器学习(ML)和人工神经网络(ANNs),ML 的一个特定子集,已被医疗保健的各个领域采用。迄今为止,已经在许多骨科亚专业中设计并实施了许多诊断和预后算法,并且取得了许多积极的成果。然而,这些研究中的许多方法都存在缺陷,并且很少有研究将 ML 的使用与当前的临床实践进行比较。在过去的三十年中,脊柱手术取得了快速的发展,特别是在植入物技术、先进的手术技术、生物制剂和强化康复方案方面。因此,它被认为是一个创新性的领域。不可避免的是,如果模型在诊断或预后方面证明有效,脊柱外科医生将希望将 ML 纳入他们的实践中。本文的目的是回顾描述神经网络在脊柱手术中的应用的已发表研究,并积极将 ANN 模型与当代临床标准进行比较,以评估其疗效、准确性和相关性。它还探讨了该技术的一些局限性,这些局限性限制了神经网络在脊柱护理中的诊断和预后应用的广泛采用。最后,它描述了机构希望将 ANN 纳入其实践中所需的考虑因素。通过这样做,本综述的目的是为脊柱外科医生提供一种实用的方法来了解神经网络的相关方面。引用本文:2021;103-B(9):1442-1448.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验