Suppr超能文献

基于标签传播的半监督特征选择方法在 RNA-seq 数据解码临床表型中的应用。

Label propagation-based semi-supervised feature selection on decoding clinical phenotypes with RNA-seq data.

机构信息

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.

Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China.

出版信息

BMC Med Genomics. 2021 Aug 31;14(Suppl 1):141. doi: 10.1186/s12920-021-00985-0.

Abstract

BACKGROUND

Clinically, behavior, cognitive, and mental functions are affected during the neurodegenerative disease progression. To date, the molecular pathogenesis of these complex disease is still unclear. With the rapid development of sequencing technologies, it is possible to delicately decode the molecular mechanisms corresponding to different clinical phenotypes at the genome-wide transcriptomic level using computational methods. Our previous studies have shown that it is difficult to distinguish disease genes from non-disease genes. Therefore, to precisely explore the molecular pathogenesis under complex clinical phenotypes, it is better to identify biomarkers corresponding to different disease stages or clinical phenotypes. So, in this study, we designed a label propagation-based semi-supervised feature selection approach (LPFS) to prioritize disease-associated genes corresponding to different disease stages or clinical phenotypes.

METHODS

In this study, we pioneering put label propagation clustering and feature selection into one framework and proposed label propagation-based semi-supervised feature selection approach. LPFS prioritizes disease genes related to different disease stages or phenotypes through the alternative iteration of label propagation clustering based on sample network and feature selection with gene expression profiles. Then the GO and KEGG pathway enrichment analysis were carried as well as the gene functional analysis to explore molecular mechanisms of specific disease phenotypes, thus to decode the changes in individual behavioral and mental characteristics during neurodegenerative disease progression.

RESULTS

Large amounts of experiments were conducted to verify the performance of LPFS with Huntington's gene expression data. Experimental results shown that LPFS performs better in comparison with the-state-of-art methods. GO and KEGG enrichment analysis of key gene sets shown that TGF-beta signaling pathway, cytokine-cytokine receptor interaction, immune response, and inflammatory response were gradually affected during the Huntington's disease progression. In addition, we found that the expression of SLC4A11, ZFP474, AMBP, TOP2A, PBK, CCDC33, APSL, DLGAP5, and Al662270 changed seriously by the development of the disease.

CONCLUSIONS

In this study, we designed a label propagation-based semi-supervised feature selection model to precisely selected key genes of different disease phenotypes. We conducted experiments using the model with Huntington's disease mice gene expression data to decode the mechanisms of it. We found many cell types, including astrocyte, microglia, and GABAergic neuron, could be involved in the pathological process.

摘要

背景

在神经退行性疾病进展过程中,临床行为、认知和精神功能受到影响。迄今为止,这些复杂疾病的分子发病机制仍不清楚。随着测序技术的快速发展,使用计算方法可以在全基因组转录组水平上精细解码对应于不同临床表型的分子机制。我们之前的研究表明,很难将疾病基因与非疾病基因区分开来。因此,要精确探索复杂临床表型下的分子发病机制,最好识别对应于不同疾病阶段或临床表型的生物标志物。因此,在这项研究中,我们设计了一种基于标签传播的半监督特征选择方法(LPFS),以优先选择对应于不同疾病阶段或临床表型的疾病相关基因。

方法

在这项研究中,我们开创性地将标签传播聚类和特征选择纳入一个框架中,并提出了基于标签传播的半监督特征选择方法。LPFS 通过基于样本网络的标签传播聚类的交替迭代和基因表达谱的特征选择,优先选择与不同疾病阶段或表型相关的疾病基因。然后进行 GO 和 KEGG 通路富集分析以及基因功能分析,以探索特定疾病表型的分子机制,从而解码神经退行性疾病进展过程中个体行为和精神特征的变化。

结果

进行了大量实验来验证 LPFS 用亨廷顿氏病基因表达数据的性能。实验结果表明,LPFS 的性能优于最先进的方法。关键基因集的 GO 和 KEGG 富集分析表明,TGF-β信号通路、细胞因子-细胞因子受体相互作用、免疫反应和炎症反应在亨廷顿氏病进展过程中逐渐受到影响。此外,我们发现 SLC4A11、ZFP474、AMBP、TOP2A、PBK、CCDC33、APSL、DLGAP5 和 Al662270 的表达随着疾病的发展而严重变化。

结论

在这项研究中,我们设计了一种基于标签传播的半监督特征选择模型,以精确选择不同疾病表型的关键基因。我们使用该模型对亨廷顿病小鼠基因表达数据进行了实验,以解码其机制。我们发现许多细胞类型,包括星形胶质细胞、小胶质细胞和 GABA 能神经元,可能参与了病理过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5242/8406783/2eeb946a1832/12920_2021_985_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验