Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey.
J Neurophysiol. 2021 Oct 1;126(4):1234-1247. doi: 10.1152/jn.00253.2021. Epub 2021 Sep 1.
The central medial (CMT) and paraventricular (PVT) thalamic nuclei project strongly to the basolateral amygdala (BL). Similarities between the responsiveness of CMT, PVT, and BL neurons suggest that these nuclei strongly influence BL activity. Supporting this possibility, an electron microscopic study reported that, in contrast with other extrinsic afferents, CMT and PVT axon terminals form very few synapses with BL interneurons. However, since limited sampling is a concern in electron microscopic studies, the present investigation was undertaken to compare the impact of CMT and PVT thalamic inputs on principal and local-circuit BL neurons with optogenetic methods and whole cell recordings in vitro. Optogenetic stimulation of CMT and PVT axons elicited glutamatergic excitatory postsynaptic potentials (EPSPs) or excitatory postsynaptic currents (EPSCs) in principal cells and interneurons, but they generally had a longer latency in interneurons. Moreover, after blockade of polysynaptic interactions with tetrodotoxin (TTX), a lower proportion of interneurons (50%) than principal cells (90%) remained responsive to CMT and PVT inputs. Although the presence of TTX-resistant responses in some interneurons indicates that CMT and PVT inputs directly contact some local-circuit cells, their lower incidence and amplitude after TTX suggest that CMT and PVT inputs form fewer synapses with them than with principal BL cells. Together, these results indicate that CMT and PVT inputs mainly contact principal BL neurons such that when CMT or PVT neurons fire, limited feedforward inhibition counters their excitatory influence over principal BL cells. However, CMT and PVT axons can also recruit interneurons indirectly, via the activation of principal cells, thereby generating feedback inhibition. Midline thalamic (MTh) nuclei contribute major projections to the basolateral amygdala (BL). Similarities between the responsiveness of MTh and BL neurons suggest that MTh neurons exert a significant influence over BL activity. Using optogenetic techniques, we show that MTh inputs mainly contact principal BL neurons such that when MTh neurons fire, little feedforward inhibition counters their excitatory influence over principal cells. Thus, MTh inputs may be major determinants of BL activity.
中央中缝核(CMT)和室旁核(PVT)强烈投射到基底外侧杏仁核(BL)。CMT、PVT 和 BL 神经元的反应相似,表明这些核强烈影响 BL 活动。支持这种可能性的是,一项电子显微镜研究报告称,与其他外在传入相比,CMT 和 PVT 轴突末梢与 BL 中间神经元形成的突触很少。然而,由于电子显微镜研究中存在有限的采样问题,本研究采用光遗传学方法和体外全细胞膜片钳记录,比较了 CMT 和 PVT 丘脑传入对主要和局部环路 BL 神经元的影响。CMT 和 PVT 轴突的光遗传学刺激在主细胞和中间神经元中诱发出谷氨酸能兴奋性突触后电位(EPSP)或兴奋性突触后电流(EPSC),但它们在中间神经元中的潜伏期通常较长。此外,用河豚毒素(TTX)阻断多突触相互作用后,对 CMT 和 PVT 输入有反应的中间神经元比例(50%)低于主细胞(90%)。尽管一些中间神经元中存在 TTX 抗性反应表明 CMT 和 PVT 输入直接接触一些局部环路细胞,但 TTX 后它们的发生率和幅度较低表明,与主 BL 细胞相比,CMT 和 PVT 输入与它们形成的突触较少。总之,这些结果表明,CMT 和 PVT 输入主要与主 BL 神经元接触,因此当 CMT 或 PVT 神经元放电时,有限的前馈抑制会抵消它们对主 BL 细胞的兴奋影响。然而,CMT 和 PVT 轴突也可以通过激活主细胞间接招募中间神经元,从而产生反馈抑制。中线丘脑(MTh)核向基底外侧杏仁核(BL)发出主要投射。MTh 和 BL 神经元的反应相似,表明 MTh 神经元对 BL 活动有显著影响。使用光遗传学技术,我们表明 MTh 输入主要与主 BL 神经元接触,因此当 MTh 神经元放电时,几乎没有前馈抑制会抵消它们对主细胞的兴奋影响。因此,MTh 输入可能是 BL 活动的主要决定因素。