Suppr超能文献

为脂质膜环境中的动态核极化核磁共振(DNP-NMR)研究量身定制的TOAC自旋标记肽。

TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments.

作者信息

Zhu Shiying, Kachooei Ehsan, Harmer Jeffrey R, Brown Louise J, Separovic Frances, Sani Marc-Antoine

机构信息

School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.

Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia.

出版信息

Biophys J. 2021 Oct 19;120(20):4501-4511. doi: 10.1016/j.bpj.2021.08.040. Epub 2021 Sep 2.

Abstract

The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better C and N signal NMR enhancements and H spin-lattice T relaxation than T-MacW.

摘要

将细胞内固态动态核极化(DNP)核磁共振与低温相结合的好处在于,通过低温保护提供足够的信噪比并保持细菌完整性,从而能够对抗菌肽进行原位生物物理研究。通过添加基于抗菌肽maculatin 1.1(Mac1)的氮氧自由基标记肽,将DNP所需的自由基源输送到细胞中。在本研究中,在胶束或脂质囊泡中测定了单(T-MacW)和双(T-T-MacW)TOAC(2,2,6,6-四甲基哌啶-N-氧基-4-氨基-4-羧酸)自旋标记的Mac1类似物的结构、定位和信号增强特性。溶液核磁共振和圆二色性结果表明,自旋标记的肽在与胶束接触时采用螺旋结构。在存在多层囊泡的情况下,这些肽表现为孤立的自由基源,双自旋标记肽的电子顺磁共振(EPR)电子-电子距离约为1nm。在甘油羰基主链附近的脂质核磁共振信号中观察到最强的顺磁弛豫增强(PRE),双自旋标记肽的PRE更强。磷脂双层中T-T-MacW自由基源的分子动力学模拟支持了EPR和PRE观察结果,同时提供了进一步的结构见解。总体而言,与T-MacW相比,T-T-MacW肽在碳和氮信号核磁共振增强以及氢自旋晶格弛豫方面表现更好。

相似文献

2
Nitroxide spin-labeled peptides for DNP-NMR in-cell studies.用于 DNP-NMR 细胞内研究的氮氧自由基标记肽。
FASEB J. 2019 Oct;33(10):11021-11027. doi: 10.1096/fj.201900931R. Epub 2019 Jul 6.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验