Suppr超能文献

中性粒细胞向牙周组织归巢缺失可调节口腔微生物组的组成和疾病潜能。

Loss of Neutrophil Homing to the Periodontal Tissues Modulates the Composition and Disease Potential of the Oral Microbiota.

机构信息

Department of Biomedical Sciences, College of Dentistry, King Faisal Universitygrid.412140.2, Al-Ahsa, Saudi Arabia.

Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of Londongrid.4868.2, London, United Kingdom.

出版信息

Infect Immun. 2021 Nov 16;89(12):e0030921. doi: 10.1128/IAI.00309-21. Epub 2021 Sep 7.

Abstract

Periodontal disease is considered to arise from an imbalance in the interplay between the host and its commensal microbiota, characterized by inflammation, destructive periodontal bone loss, and a dysbiotic oral microbial community. The neutrophil is a key component of defense of the periodontium: defects in their number or efficacy of function predisposes individuals to development of periodontal disease. Paradoxically, neutrophil activity, as part of a deregulated inflammatory response, is considered an important element in the destructive disease process. In this investigation, we examined the role the neutrophil plays in the regulation of the oral microbiota by analysis of the microbiome composition in mice lacking the CXCR2 neutrophil receptor required for recruitment to the periodontal tissues. A breeding protocol was employed that ensured that only the oral microbiota of wild-type (CXCR2) mice was transferred to subsequent generations of wild-type, heterozygote, and homozygote littermates. In the absence of neutrophils, the microbiome undergoes a significant shift in total load and composition compared to when normal levels of neutrophil recruitment into the gingival tissues occur, and this is accompanied by a significant increase in periodontal bone pathology. However, transfer of the oral microbiome of CXCR2 mice into germfree CXCR2 mice led to restoration of the microbiome to the wild-type CXCR2 composition and the absence of pathology. These data demonstrate that the composition of the oral microbiome is inherently flexible and is governed to a significant extent by the genetics and resultant phenotype of the host organism.

摘要

牙周病被认为是由宿主与其共生微生物群落之间相互作用的失衡引起的,其特征为炎症、破坏性牙周骨丧失和口腔微生物群落的失调。中性粒细胞是防御牙周组织的关键组成部分:其数量或功能的缺陷使个体易患牙周病。矛盾的是,中性粒细胞的活性作为失调的炎症反应的一部分,被认为是破坏性疾病过程中的重要因素。在这项研究中,我们通过分析缺乏招募到牙周组织所需的 CXCR2 中性粒细胞受体的小鼠的微生物组组成,研究了中性粒细胞在调节口腔微生物群中的作用。采用了一种繁殖方案,确保只有野生型(CXCR2)小鼠的口腔微生物群被转移到后续的野生型、杂合子和纯合子同窝仔鼠中。在缺乏中性粒细胞的情况下,与正常水平的中性粒细胞募集到牙龈组织时相比,微生物组的总负荷和组成发生了显著变化,并且伴随着牙周骨病理学的显著增加。然而,将 CXCR2 小鼠的口腔微生物群转移到无菌 CXCR2 小鼠中,导致微生物组恢复到野生型 CXCR2 组成,并且不存在病理学。这些数据表明,口腔微生物组的组成具有内在的灵活性,并且在很大程度上受到宿主生物的遗传和由此产生的表型的控制。

相似文献

1
Loss of Neutrophil Homing to the Periodontal Tissues Modulates the Composition and Disease Potential of the Oral Microbiota.
Infect Immun. 2021 Nov 16;89(12):e0030921. doi: 10.1128/IAI.00309-21. Epub 2021 Sep 7.
2
The role of the microbiota in periodontal disease.
Periodontol 2000. 2020 Jun;83(1):14-25. doi: 10.1111/prd.12296.
3
Horizontal and Vertical Transfer of Oral Microbial Dysbiosis and Periodontal Disease.
J Dent Res. 2019 Dec;98(13):1503-1510. doi: 10.1177/0022034519877150. Epub 2019 Sep 27.
5
Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis.
PLoS Pathog. 2017 Aug 17;13(8):e1006513. doi: 10.1371/journal.ppat.1006513. eCollection 2017 Aug.
6
Oral dysbiosis initiates periodontal disease in experimental kidney disease.
Nephrol Dial Transplant. 2025 May 30;40(6):1187-1202. doi: 10.1093/ndt/gfae266.
10
Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis.
Cell Microbiol. 2013 Aug;15(8):1419-26. doi: 10.1111/cmi.12127. Epub 2013 Mar 22.

引用本文的文献

1
Association between neutrophil-percentage-to-albumin ratio and periodontitis: insights from a population-based study.
Front Nutr. 2025 Apr 11;12:1551349. doi: 10.3389/fnut.2025.1551349. eCollection 2025.
3
Type 2 immunity in allergic diseases.
Cell Mol Immunol. 2025 Mar;22(3):211-242. doi: 10.1038/s41423-025-01261-2. Epub 2025 Feb 17.
4
The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review.
Dent J (Basel). 2024 Sep 24;12(10):299. doi: 10.3390/dj12100299.
6
Oral polymicrobial communities: Assembly, function, and impact on diseases.
Cell Host Microbe. 2023 Apr 12;31(4):528-538. doi: 10.1016/j.chom.2023.02.009. Epub 2023 Mar 17.
7
The Murine Oral Metatranscriptome Reveals Microbial and Host Signatures of Periodontal Disease.
J Dent Res. 2023 May;102(5):565-573. doi: 10.1177/00220345221149675. Epub 2023 Mar 8.
8
Host-microbiome interactions regarding peri-implantitis and dental implant loss.
J Transl Med. 2022 Sep 23;20(1):425. doi: 10.1186/s12967-022-03636-9.
9
Hermansky-Pudlak syndrome type 2: A rare cause of severe periodontitis in adolescents-A case study.
Front Pediatr. 2022 Jul 19;10:914243. doi: 10.3389/fped.2022.914243. eCollection 2022.
10
Oral Health, Antimicrobials and Care for Patients With Chronic Oral Diseases - A Review of Knowledge and Treatment Strategies.
Front Oral Health. 2022 Jun 7;3:866695. doi: 10.3389/froh.2022.866695. eCollection 2022.

本文引用的文献

1
Acquisition of oral microbiota is driven by environment, not host genetics.
Microbiome. 2021 Feb 23;9(1):54. doi: 10.1186/s40168-020-00986-8.
2
A 16S rRNA Gene and Draft Genome Database for the Murine Oral Bacterial Community.
mSystems. 2021 Feb 9;6(1):e01222-20. doi: 10.1128/mSystems.01222-20.
4
The role of the microbiota in periodontal disease.
Periodontol 2000. 2020 Jun;83(1):14-25. doi: 10.1111/prd.12296.
5
Horizontal and Vertical Transfer of Oral Microbial Dysbiosis and Periodontal Disease.
J Dent Res. 2019 Dec;98(13):1503-1510. doi: 10.1177/0022034519877150. Epub 2019 Sep 27.
6
Epigenetic findings in periodontitis in UK twins: a cross-sectional study.
Clin Epigenetics. 2019 Feb 13;11(1):27. doi: 10.1186/s13148-019-0614-4.
7
Impact of commensal flora on periodontal immune response to lipopolysaccharide.
J Periodontol. 2018 Oct;89(10):1213-1220. doi: 10.1002/JPER.17-0567. Epub 2018 Aug 29.
8
Host Genetic Control of the Oral Microbiome in Health and Disease.
Cell Host Microbe. 2017 Sep 13;22(3):269-278.e3. doi: 10.1016/j.chom.2017.08.013.
9
Genetic influences on the human oral microbiome.
BMC Genomics. 2017 Aug 24;18(1):659. doi: 10.1186/s12864-017-4008-8.
10
The absence of microbiota delays the inflammatory response to Cryptococcus gattii.
Int J Med Microbiol. 2016 Jun;306(4):187-95. doi: 10.1016/j.ijmm.2016.03.010. Epub 2016 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验