Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
Nature. 2021 Sep;597(7875):214-219. doi: 10.1038/s41586-021-03826-3. Epub 2021 Sep 8.
Spontaneous formation of ordered structures-self-assembly-is ubiquitous in nature and observed on different length scales, ranging from atomic and molecular systems to micrometre-scale objects and living matter. Self-ordering in molecular and biological systems typically involves short-range hydrophobic and van der Waals interactions. Here we introduce an approach to micrometre-scale self-assembly based on the joint action of attractive Casimir and repulsive electrostatic forces arising between charged metallic nanoflakes in an aqueous solution. This system forms a self-assembled optical Fabry-Pérot microcavity with a fundamental mode in the visible range (long-range separation distance about 100-200 nanometres) and a tunable equilibrium configuration. Furthermore, by placing an excitonic material in the microcavity region, we are able to realize hybrid light-matter states (polaritons), whose properties, such as coupling strength and eigenstate composition, can be controlled in real time by the concentration of ligand molecules in the solution and light pressure. These Casimir microcavities could find future use as sensitive and tunable platforms for a variety of applications, including opto-mechanics, nanomachinery and cavity-induced polaritonic chemistry.
自发形成有序结构——自组装——在自然界中无处不在,可在不同的长度尺度上观察到,从原子和分子系统到微米级物体和生命物质。分子和生物系统中的自组织通常涉及短程疏水和范德华相互作用。在这里,我们引入了一种基于在水溶液中带电荷的金属纳米薄片之间产生的吸引力 Casimir 和排斥静电相互作用的微米级自组装方法。该系统形成了具有可见范围内基本模式(长程分离距离约为 100-200 纳米)和可调谐平衡构型的自组装光学 Fabry-Pérot 微腔。此外,通过在微腔区域放置激子材料,我们能够实现混合光物质状态(极化激元),其特性,如耦合强度和本征态组成,可以通过溶液中配体分子的浓度和光压力实时控制。这些 Casimir 微腔可以作为各种应用的敏感和可调谐平台得到应用,包括光机械、纳米机械和腔诱导极化激元化学。