Alam Suhaib, Qureshi Mohammad
Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, Guwahati, India.
J Phys Chem Lett. 2021 Sep 23;12(37):8947-8955. doi: 10.1021/acs.jpclett.1c02664. Epub 2021 Sep 10.
The design of a photoanode with a bridging strategy that can enhance the charge injection and transport in a heterojunction can be an efficient approach to separate the photogenerated charge carriers and enhance the water oxidation kinetics. Aiming at such issues, herein we propose a BiVO/GQDs/CoSn-LDH (layered double hydroxide) photoanode, which leads to the formation of a p-n heterojunction with bridged graphene quantum dots (GQDs) to accelerate the photoelectrochemical (PEC) performance. The BiVO/GQDs/CoSn-LDH photoanode exhibits a maximum photocurrent density of 4.15 mA/cm, which is ∼3-fold higher than for the pristine BiVO photoanode with an ∼250 mV cathodic shift in the onset potential. A faradaic yield of ∼91% confirms that the obtained photocurrent is mainly due to water oxidation. A mechanistic study based on the electrochemical impedance (EIS), charge separation, and charge injection efficacy measurements reveals that the introduction of GQDs between BiVO and CoSn-LDH provides a continuous conducting network to extract holes from the BiVO surface and efficiently inject into the CoSn-LDH surface for the water oxidation reaction.
采用能增强异质结中电荷注入和传输的桥连策略设计光阳极,可能是分离光生电荷载流子并增强水氧化动力学的有效方法。针对此类问题,我们在此提出一种BiVO/GQDs/CoSn-LDH(层状双氢氧化物)光阳极,它会形成具有桥连石墨烯量子点(GQDs)的p-n异质结,以加速光电化学(PEC)性能。BiVO/GQDs/CoSn-LDH光阳极表现出4.15 mA/cm的最大光电流密度,比原始BiVO光阳极高出约3倍,起始电位有约250 mV的阴极偏移。约91%的法拉第产率证实所获得的光电流主要源于水氧化。基于电化学阻抗(EIS)、电荷分离和电荷注入效率测量的机理研究表明,在BiVO和CoSn-LDH之间引入GQDs提供了一个连续的导电网络,以从BiVO表面提取空穴并有效地注入到CoSn-LDH表面用于水氧化反应。