Suppr超能文献

基于机器学习和深度学习方法的新冠肺炎诊断模型综述

Review on COVID-19 diagnosis models based on machine learning and deep learning approaches.

作者信息

Alyasseri Zaid Abdi Alkareem, Al-Betar Mohammed Azmi, Doush Iyad Abu, Awadallah Mohammed A, Abasi Ammar Kamal, Makhadmeh Sharif Naser, Alomari Osama Ahmad, Abdulkareem Karrar Hameed, Adam Afzan, Damasevicius Robertas, Mohammed Mazin Abed, Zitar Raed Abu

机构信息

Center for Artificial Intelligence Technology, Faculty of Information Science and Technology Universiti Kebangsaan Malaysia Bangi Malaysia.

ECE Department-Faculty of Engineering University of Kufa Najaf Iraq.

出版信息

Expert Syst. 2022 Mar;39(3):e12759. doi: 10.1111/exsy.12759. Epub 2021 Jul 28.

Abstract

COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.

摘要

COVID-19是由一种名为严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的新型冠状病毒引起的疾病。最近,COVID-19已成为大流行病,在216个以上国家和地区感染了超过1.52亿人。感染人数的指数级增长使传统诊断技术效率低下。因此,许多研究人员开发了多种智能技术,如深度学习(DL)和机器学习(ML),它们可以帮助医疗部门快速、准确地诊断COVID-19。因此,本文对用于COVID-19诊断的最新DL和ML技术进行了全面综述。这些研究发表于2019年12月至2021年4月。总体而言,本文纳入了从IEEE、Springer和Elsevier等多家出版社精心挑选的200多项研究。我们将研究方向分为两类:DL和ML,并展示了从不同国家建立和提取的COVID-19公共数据集。对用于评估诊断方法的措施进行了比较分析,并提供了适当的讨论。总之,对于COVID-19诊断和疫情预测,支持向量机(SVM)是最广泛使用的机器学习机制,卷积神经网络(CNN)是最广泛使用的深度学习机制。准确性、敏感性和特异性是以往研究中最广泛使用的测量指标。最后,这篇综述文章将指导研究界了解即将到来的用于COVID-19的机器学习发展,并激发他们为未来发展开展工作。这篇综述文章将指导研究界了解即将到来的用于COVID-19的ML和DL发展,并激发他们为未来发展开展工作。

相似文献

1
Review on COVID-19 diagnosis models based on machine learning and deep learning approaches.
Expert Syst. 2022 Mar;39(3):e12759. doi: 10.1111/exsy.12759. Epub 2021 Jul 28.
2
A Survey of COVID-19 Diagnosis Using Routine Blood Tests with the Aid of Artificial Intelligence Techniques.
Diagnostics (Basel). 2023 May 16;13(10):1749. doi: 10.3390/diagnostics13101749.
3
Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey.
SN Comput Sci. 2022;3(4):286. doi: 10.1007/s42979-022-01184-z. Epub 2022 May 12.
4
Role of deep learning in early detection of COVID-19: Scoping review.
Comput Methods Programs Biomed Update. 2021;1:100025. doi: 10.1016/j.cmpbup.2021.100025. Epub 2021 Jul 30.
6
Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review.
Curr Med Imaging. 2021;17(12):1403-1418. doi: 10.2174/1573405617666210713113439.
7
Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review.
Chaos Solitons Fractals. 2020 Sep;138:109947. doi: 10.1016/j.chaos.2020.109947. Epub 2020 May 29.
8
A comprehensive review of COVID-19 detection with machine learning and deep learning techniques.
Health Technol (Berl). 2023 Jun 7:1-14. doi: 10.1007/s12553-023-00757-z.
9
Combating Covid-19 using machine learning and deep learning: Applications, challenges, and future perspectives.
Array (N Y). 2023 Mar;17:100271. doi: 10.1016/j.array.2022.100271. Epub 2022 Dec 10.
10
A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices.
Appl Soft Comput. 2022 Oct;128:109401. doi: 10.1016/j.asoc.2022.109401. Epub 2022 Jul 29.

引用本文的文献

1
AI-driven techniques for detection and mitigation of SARS-CoV-2 spread: a review, taxonomy, and trends.
Clin Exp Med. 2025 Jun 14;25(1):204. doi: 10.1007/s10238-025-01753-5.
2
A Large-Scale IoT-Based Scheme for Real-Time Prediction of Infectious Disease Symptoms.
Mob Netw Appl. 2023 Feb 2:1-19. doi: 10.1007/s11036-023-02111-z.
3
Using fused Contourlet transform and neural features to spot COVID19 infections in CT scan images.
Intell Syst Appl. 2023 Feb;17:200182. doi: 10.1016/j.iswa.2023.200182. Epub 2023 Jan 13.
5
Classification of the ICU Admission for COVID-19 Patients with Transfer Learning Models Using Chest X-Ray Images.
Diagnostics (Basel). 2025 Mar 26;15(7):845. doi: 10.3390/diagnostics15070845.
7
Optimized models and deep learning methods for drug response prediction in cancer treatments: a review.
PeerJ Comput Sci. 2024 Mar 25;10:e1903. doi: 10.7717/peerj-cs.1903. eCollection 2024.
8
AI-powered COVID-19 forecasting: a comprehensive comparison of advanced deep learning methods.
Osong Public Health Res Perspect. 2024 Apr;15(2):115-136. doi: 10.24171/j.phrp.2023.0287. Epub 2024 Mar 28.
9
Automated Detection of COVID-19 from Multimodal Imaging Data Using Optimized Convolutional Neural Network Model.
J Imaging Inform Med. 2024 Oct;37(5):2074-2088. doi: 10.1007/s10278-024-01077-y. Epub 2024 Mar 18.
10
COVID-19 detection in lung CT slices using Brownian-butterfly-algorithm optimized lightweight deep features.
Heliyon. 2024 Mar 2;10(5):e27509. doi: 10.1016/j.heliyon.2024.e27509. eCollection 2024 Mar 15.

本文引用的文献

1
Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing.
Internet Things (Amst). 2020 Sep;11:100222. doi: 10.1016/j.iot.2020.100222. Epub 2020 May 12.
2
Adversarial Examples-Security Threats to COVID-19 Deep Learning Systems in Medical IoT Devices.
IEEE Internet Things J. 2020 Aug 3;8(12):9603-9610. doi: 10.1109/JIOT.2020.3013710. eCollection 2021 Jun 15.
3
Realizing an Effective COVID-19 Diagnosis System Based on Machine Learning and IoT in Smart Hospital Environment.
IEEE Internet Things J. 2021 Jan 11;8(21):15919-15928. doi: 10.1109/JIOT.2021.3050775. eCollection 2021 Nov 1.
4
COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning.
Multimed Tools Appl. 2022;81(21):30615-30645. doi: 10.1007/s11042-022-12156-z. Epub 2022 Apr 7.
5
COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN.
Diagnostics (Basel). 2022 Jan 21;12(2):267. doi: 10.3390/diagnostics12020267.
6
Deep learning via LSTM models for COVID-19 infection forecasting in India.
PLoS One. 2022 Jan 28;17(1):e0262708. doi: 10.1371/journal.pone.0262708. eCollection 2022.
7
Novel Feature Selection and Voting Classifier Algorithms for COVID-19 Classification in CT Images.
IEEE Access. 2020 Sep 30;8:179317-179335. doi: 10.1109/ACCESS.2020.3028012. eCollection 2020.
8
Multi-feature Multi-Scale CNN-Derived COVID-19 Classification from Lung Ultrasound Data.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2618-2621. doi: 10.1109/EMBC46164.2021.9631069.
9
A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19.
Appl Intell (Dordr). 2020;50(11):3913-3925. doi: 10.1007/s10489-020-01770-9. Epub 2020 Jul 6.
10
Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment.
IEEE Access. 2020 Jun 12;8:109581-109595. doi: 10.1109/ACCESS.2020.3001973. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验