Suppr超能文献

非黑色素瘤皮肤癌分析中的高光谱成像与稳健统计学

Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis.

作者信息

Courtenay Lloyd A, González-Aguilera Diego, Lagüela Susana, Del Pozo Susana, Ruiz-Mendez Camilo, Barbero-García Inés, Román-Curto Concepción, Cañueto Javier, Santos-Durán Carlos, Cardeñoso-Álvarez María Esther, Roncero-Riesco Mónica, Hernandez-Lopez David, Guerrero-Sevilla Diego, Rodríguez-Gonzalvez Pablo

机构信息

Department of Cartographic and Terrain Engineering, Higher Polytechnic School of Ávila, University of Salamanca, Hornos Caleros 50, 05003 Ávila, Spain.

Department of Didactics of Mathematics and Experimental Sciences, Faculty of Education, Paseo de Canaleja 169, 37008, Salamanca, Spain.

出版信息

Biomed Opt Express. 2021 Jul 20;12(8):5107-5127. doi: 10.1364/BOE.428143. eCollection 2021 Aug 1.

Abstract

Non-Melanoma skin cancer is one of the most frequent types of cancer. Early detection is encouraged so as to ensure the best treatment, Hyperspectral imaging is a promising technique for non-invasive inspection of skin lesions, however, the optimal wavelengths for these purposes are yet to be conclusively determined. A visible-near infrared hyperspectral camera with an ad-hoc built platform was used for image acquisition in the present study. Robust statistical techniques were used to conclude an optimal range between 573.45 and 779.88 nm to distinguish between healthy and non-healthy skin. Wavelengths between 429.16 and 520.17 nm were additionally found to be optimal for the differentiation between cancer types.

摘要

非黑色素瘤皮肤癌是最常见的癌症类型之一。鼓励早期检测以确保最佳治疗效果。高光谱成像是一种用于皮肤病变非侵入性检查的有前景的技术,然而,用于这些目的的最佳波长尚未最终确定。本研究使用了一个带有专门构建平台的可见-近红外高光谱相机进行图像采集。采用了稳健的统计技术得出在573.45至779.88纳米之间的最佳范围,以区分健康皮肤和非健康皮肤。另外还发现,在429.16至520.17纳米之间的波长对于区分癌症类型最为理想。

相似文献

引用本文的文献

4
Precision Imaging for Early Detection of Esophageal Cancer.用于早期检测食管癌的精准成像
Bioengineering (Basel). 2025 Jan 20;12(1):90. doi: 10.3390/bioengineering12010090.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验