Suppr超能文献

一套用于日常压力管理的移动对话代理(Popbots):混合方法探索性研究。

A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study.

作者信息

Mauriello Matthew Louis, Tantivasadakarn Nantanick, Mora-Mendoza Marco Antonio, Lincoln Emmanuel Thierry, Hon Grace, Nowruzi Parsa, Simon Dorien, Hansen Luke, Goenawan Nathaniel H, Kim Joshua, Gowda Nikhil, Jurafsky Dan, Paredes Pablo Enrique

机构信息

Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States.

Symbolic Systems Program, School of Humanities and Sciences, Stanford University, Stanford, CA, United States.

出版信息

JMIR Form Res. 2021 Sep 14;5(9):e25294. doi: 10.2196/25294.

Abstract

BACKGROUND

Approximately 60%-80% of the primary care visits have a psychological stress component, but only 3% of patients receive stress management advice during these visits. Given recent advances in natural language processing, there is renewed interest in mental health chatbots. Conversational agents that can understand a user's problems and deliver advice that mitigates the effects of daily stress could be an effective public health tool. However, such systems are complex to build and costly to develop.

OBJECTIVE

To address these challenges, our aim is to develop and evaluate a fully automated mobile suite of shallow chatbots-we call them Popbots-that may serve as a new species of chatbots and further complement human assistance in an ecosystem of stress management support.

METHODS

After conducting an exploratory Wizard of Oz study (N=14) to evaluate the feasibility of a suite of multiple chatbots, we conducted a web-based study (N=47) to evaluate the implementation of our prototype. Each participant was randomly assigned to a different chatbot designed on the basis of a proven cognitive or behavioral intervention method. To measure the effectiveness of the chatbots, the participants' stress levels were determined using self-reported psychometric evaluations (eg, web-based daily surveys and Patient Health Questionnaire-4). The participants in these studies were recruited through email and enrolled on the web, and some of them participated in follow-up interviews that were conducted in person or on the web (as necessary).

RESULTS

Of the 47 participants, 31 (66%) completed the main study. The findings suggest that the users viewed the conversations with our chatbots as helpful or at least neutral and came away with increasingly positive sentiment toward the use of chatbots for proactive stress management. Moreover, those users who used the system more often (ie, they had more than or equal to the median number of conversations) noted a decrease in depression symptoms compared with those who used the system less often based on a Wilcoxon signed-rank test (W=91.50; Z=-2.54; P=.01; r=0.47). The follow-up interviews with a subset of the participants indicated that half of the common daily stressors could be discussed with chatbots, potentially reducing the burden on human coping resources.

CONCLUSIONS

Our work suggests that suites of shallow chatbots may offer benefits for both users and designers. As a result, this study's contributions include the design and evaluation of a novel suite of shallow chatbots for daily stress management, a summary of benefits and challenges associated with random delivery of multiple conversational interventions, and design guidelines and directions for future research into similar systems, including authoring chatbot systems and artificial intelligence-enabled recommendation algorithms.

摘要

背景

在初级保健就诊中,约60%-80%存在心理压力因素,但只有3%的患者在就诊期间得到压力管理建议。鉴于自然语言处理的最新进展,人们对心理健康聊天机器人重新产生了兴趣。能够理解用户问题并提供减轻日常压力影响建议的对话代理可能是一种有效的公共卫生工具。然而,构建这样的系统很复杂,开发成本也很高。

目的

为应对这些挑战,我们的目标是开发并评估一套完全自动化的浅层聊天机器人移动套件——我们称之为流行机器人(Popbots),它可能成为一种新型聊天机器人,并在压力管理支持生态系统中进一步补充人力协助。

方法

在进行一项探索性的奥兹巫师研究(N=14)以评估一套多个聊天机器人的可行性之后,我们进行了一项基于网络的研究(N=47)来评估我们原型的实施情况。每个参与者被随机分配到一个基于经过验证的认知或行为干预方法设计的不同聊天机器人。为了衡量聊天机器人的有效性,使用自我报告的心理测评评估(如基于网络的每日调查和患者健康问卷-4)来确定参与者的压力水平。这些研究中的参与者通过电子邮件招募并在网上注册,其中一些人参加了亲自或在网上进行的后续访谈(视情况而定)。

结果

47名参与者中,31名(66%)完成了主要研究。研究结果表明,用户认为与我们的聊天机器人对话是有帮助的,或者至少是中立的,并且对使用聊天机器人进行主动压力管理的态度越来越积极。此外,根据威尔科克森符号秩检验(W=91.50;Z=-2.54;P=.01;r=0.47),那些使用系统更频繁的用户(即他们的对话次数多于或等于中位数)与使用系统较少的用户相比,抑郁症状有所减轻。对一部分参与者的后续访谈表明,一半的常见日常压力源可以与聊天机器人讨论,这可能减轻人类应对资源的负担。

结论

我们的工作表明,浅层聊天机器人套件可能对用户和设计者都有好处。因此,本研究的贡献包括设计和评估一套用于日常压力管理的新型浅层聊天机器人套件,总结与随机提供多种对话干预相关的好处和挑战,以及为未来类似系统研究提供设计指南和方向,包括编写聊天机器人系统和基于人工智能的推荐算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f6/8479600/be9afb1e9aa9/formative_v5i9e25294_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验