Suppr超能文献

基于3D盆腔CT图像的前列腺及危及器官的半监督语义分割

Semi-supervised semantic segmentation of prostate and organs-at-risk on 3D pelvic CT images.

作者信息

Zhang Zhuangzhuang, Zhao Tianyu, Gay Hiram, Zhang Weixiong, Sun Baozhou

机构信息

Department of Computer Science and Engineering, Washington University, One Brookings Drive, Campus Box 1045, St. Louis, MO 63130, United States of America.

Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, United States of America.

出版信息

Biomed Phys Eng Express. 2021 Oct 5;7(6). doi: 10.1088/2057-1976/ac26e8.

Abstract

The recent development of deep learning approaches has revoluted medical data processing, including semantic segmentation, by dramatically improving performance. Automated segmentation can assist radiotherapy treatment planning by saving manual contouring efforts and reducing intra-observer and inter-observer variations. However, training effective deep learning models usually Requires a large amount of high-quality labeled data, often costly to collect. We developed a novel semi-supervised adversarial deep learning approach for 3D pelvic CT image semantic segmentation. Unlike supervised deep learning methods, the new approach can utilize both annotated and un-annotated data for training. It generates un-annotated synthetic data by a data augmentation scheme using generative adversarial networks (GANs). We applied the new approach to segmenting multiple organs in male pelvic CT images. CT images without annotations and GAN-synthesized un-annotated images were used in semi-supervised learning. Experimental results, evaluated by three metrics (Dice similarity coefficient, average Hausdorff distance, and average surface Hausdorff distance), showed that the new method achieved comparable performance with substantially fewer annotated images or better performance with the same amount of annotated data, outperforming the existing state-of-the-art methods.

摘要

深度学习方法的最新发展彻底改变了医学数据处理,包括语义分割,显著提高了性能。自动分割可以通过节省手动轮廓绘制工作并减少观察者内部和观察者之间的差异来辅助放射治疗治疗计划。然而,训练有效的深度学习模型通常需要大量高质量的标记数据,收集成本往往很高。我们开发了一种用于3D盆腔CT图像语义分割的新型半监督对抗深度学习方法。与监督深度学习方法不同,新方法可以利用带注释和未带注释的数据进行训练。它通过使用生成对抗网络(GAN)的数据增强方案生成未带注释的合成数据。我们将新方法应用于男性盆腔CT图像中多个器官的分割。在半监督学习中使用了没有注释的CT图像和GAN合成的未带注释图像。通过三个指标(骰子相似系数、平均豪斯多夫距离和平均表面豪斯多夫距离)评估的实验结果表明,新方法在使用显著更少的带注释图像时取得了可比的性能,或者在使用相同数量的带注释数据时取得了更好的性能,优于现有的最先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验