Suppr超能文献

ESIDE:一种从数字图像中识别蚯蚓物种(E. fetida)的计算智能方法:在分类学中的应用。

ESIDE: A computationally intelligent method to identify earthworm species (E. fetida) from digital images: Application in taxonomy.

机构信息

Biotechnology Laboratory, Department of Zoology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, Pakistan.

Computaional Biology and Data Analysis Laboratory, Department of Computer Sciences & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, Pakistan.

出版信息

PLoS One. 2021 Sep 16;16(9):e0255674. doi: 10.1371/journal.pone.0255674. eCollection 2021.

Abstract

Earthworms (Crassiclitellata) being ecosystem engineers significantly affect the physical, chemical, and biological properties of the soil by recycling organic material, increasing nutrient availability, and improving soil structure. The efficiency of earthworms in ecology varies along with species. Therefore, the role of taxonomy in earthworm study is significant. The taxonomy of earthworms cannot reliably be established through morphological characteristics because the small and simple body plan of the earthworm does not have anatomical complex and highly specialized structures. Recently, molecular techniques have been adopted to accurately classify the earthworm species but these techniques are time-consuming and costly. To combat this issue, in this study, we propose a machine learning-based earthworm species identification model that uses digital images of earthworms. We performed a stringent performance evaluation not only through 10-fold cross-validation and on an external validation dataset but also in real settings by involving an experienced taxonomist. In all the evaluation settings, our proposed model has given state-of-the-art performance and justified its use to aid earthworm taxonomy studies. We made this model openly accessible through a cloud-based webserver and python code available at https://sites.google.com/view/wajidarshad/software and https://github.com/wajidarshad/ESIDE.

摘要

蚯蚓(Crassiclitellata)作为生态系统工程师,通过有机物质的循环利用、增加养分的可用性和改善土壤结构,显著影响土壤的物理、化学和生物特性。蚯蚓在生态学中的效率因物种而异。因此,分类学在蚯蚓研究中的作用是重要的。由于蚯蚓的身体结构小巧简单,没有解剖结构复杂和高度专业化的结构,因此无法仅通过形态特征可靠地建立蚯蚓的分类。最近,已经采用了分子技术来准确分类蚯蚓物种,但这些技术既耗时又昂贵。为了解决这个问题,在这项研究中,我们提出了一种基于机器学习的蚯蚓物种识别模型,该模型使用蚯蚓的数字图像。我们不仅通过 10 折交叉验证和外部验证数据集进行了严格的性能评估,还通过涉及经验丰富的分类学家在实际环境中进行了评估。在所有评估环境中,我们提出的模型都表现出了最先进的性能,并证明了其在辅助蚯蚓分类学研究中的使用价值。我们通过基于云的网络服务器公开提供了这个模型,并在 https://sites.google.com/view/wajidarshad/softwarehttps://github.com/wajidarshad/ESIDE 上提供了 python 代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440e/8445633/2426981d5937/pone.0255674.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验