Suppr超能文献

在纵向生活方式干预研究中,自我报告饮食的差异测量误差的影响。

Effects of differential measurement error in self-reported diet in longitudinal lifestyle intervention studies.

机构信息

Department of Preventive Medicine, Northwestern University, Chicago, Israel.

出版信息

Int J Behav Nutr Phys Act. 2021 Sep 16;18(1):125. doi: 10.1186/s12966-021-01184-x.

Abstract

BACKGROUND

Lifestyle intervention studies often use self-reported measures of diet as an outcome variable to measure changes in dietary intake. The presence of measurement error in self-reported diet due to participant failure to accurately report their diet is well known. Less familiar to researchers is differential measurement error, where the nature of measurement error differs by treatment group and/or time. Differential measurement error is often present in intervention studies and can result in biased estimates of the treatment effect and reduced power to detect treatment effects. Investigators need to be aware of the impact of differential measurement error when designing intervention studies that use self-reported measures.

METHODS

We use simulation to assess the consequences of differential measurement error on the ability to estimate treatment effects in a two-arm randomized trial with two time points. We simulate data under a variety of scenarios, focusing on how different factors affect power to detect a treatment effect, bias of the treatment effect, and coverage of the 95% confidence interval of the treatment effect. Simulations use realistic scenarios based on data from the Trials of Hypertension Prevention Study. Simulated sample sizes ranged from 110-380 per group.

RESULTS

Realistic differential measurement error seen in lifestyle intervention studies can require an increased sample size to achieve 80% power to detect a treatment effect and may result in a biased estimate of the treatment effect.

CONCLUSIONS

Investigators designing intervention studies that use self-reported measures should take differential measurement error into account by increasing their sample size, incorporating an internal validation study, and/or identifying statistical methods to correct for differential measurement error.

摘要

背景

生活方式干预研究通常使用自我报告的饮食测量作为因变量来衡量饮食摄入的变化。由于参与者未能准确报告其饮食,自我报告的饮食中存在测量误差是众所周知的。研究人员不太熟悉的是差异测量误差,即测量误差的性质因治疗组和/或时间而异。差异测量误差在干预研究中经常存在,并可能导致治疗效果的估计偏倚和检测治疗效果的能力降低。当设计使用自我报告测量的干预研究时,研究人员需要意识到差异测量误差的影响。

方法

我们使用模拟来评估在具有两个时间点的两臂随机试验中,差异测量误差对估计治疗效果的能力的影响。我们在各种情况下模拟数据,重点关注不同因素如何影响检测治疗效果的能力、治疗效果的偏差以及治疗效果的 95%置信区间的覆盖范围。模拟使用基于高血压预防研究数据的现实场景。模拟的样本量范围为每组 110-380 个。

结果

在生活方式干预研究中观察到的现实差异测量误差可能需要增加样本量才能达到 80%的检测治疗效果的能力,并可能导致治疗效果的估计偏倚。

结论

设计使用自我报告测量的干预研究的研究人员应通过增加样本量、纳入内部验证研究以及/或确定用于纠正差异测量误差的统计方法来考虑差异测量误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1c/8447716/8f9c1026dbe2/12966_2021_1184_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验