Suppr超能文献

CT 图像采集参数对不同大小肺结节良恶性预测中放射组学诊断性能的影响。

Effect of CT image acquisition parameters on diagnostic performance of radiomics in predicting malignancy of pulmonary nodules of different sizes.

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.

Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.

出版信息

Eur Radiol. 2022 Mar;32(3):1517-1527. doi: 10.1007/s00330-021-08274-1. Epub 2021 Sep 21.

Abstract

OBJECTIVES

To investigate the effect of CT image acquisition parameters on the performance of radiomics in classifying benign and malignant pulmonary nodules (PNs) with respect to nodule size.

METHODS

We retrospectively collected CT images of 696 patients with PNs from March 2015 to March 2018. PNs were grouped by nodule diameter: T1a (diameter ≤ 1.0 cm), T1b (1.0 cm < diameter ≤ 2.0 cm), and T1c (2.0 cm < diameter ≤ 3.0 cm). CT images were divided into four settings according to slice-thickness-convolution-kernels: setting 1 (slice thickness/reconstruction type: 1.25 mm sharp), setting 2 (5 mm sharp), setting 3 (5 mm smooth), and random setting. We created twelve groups from two interacting conditions. Each PN was segmented and had 1160 radiomics features extracted. Non-redundant features with high predictive ability in training were selected to build a distinct model under each of the twelve subsets.

RESULTS

The performance (AUCs) on predicting PN malignancy were as follows: T1a group: 0.84, 0.64, 0.68, and 0.68; T1b group: 0.68, 0.74, 0.76, and 0.70; T1c group: 0.66, 0.64, 0.63, and 0.70, for the setting 1, setting 2, setting 3, and random setting, respectively. In the T1a group, the AUC of radiomics model in setting 1 was statistically significantly higher than all others; In the T1b group, AUCs of radiomics models in setting 3 were statistically significantly higher than some; and in the T1c group, there were no statistically significant differences among models.

CONCLUSIONS

For PNs less than 1 cm, CT image acquisition parameters have a significant influence on diagnostic performance of radiomics in predicting malignancy, and a model created using images reconstructed with thin section and a sharp kernel algorithm achieved the best performance. For PNs larger than 1 cm, CT reconstruction parameters did not affect diagnostic performance substantially.

KEY POINTS

• CT image acquisition parameters have a significant influence on the diagnostic performance of radiomics in pulmonary nodules less than 1 cm. • In pulmonary nodules less than 1 cm, a radiomics model created by using images reconstructed with thin section and a sharp kernel algorithm achieved the best diagnostic performance. • For PNs larger than 1 cm, CT image acquisition parameters do not affect diagnostic performance substantially.

摘要

目的

探讨 CT 图像采集参数对基于结节大小的良恶性肺结节(PN)分类中放射组学性能的影响。

方法

我们回顾性收集了 2015 年 3 月至 2018 年 3 月期间 696 例 PNs 的 CT 图像。根据结节直径将 PNs 分为 T1a 组(直径≤1.0cm)、T1b 组(1.0cm<直径≤2.0cm)和 T1c 组(2.0cm<直径≤3.0cm)。根据层厚-卷积核,将 CT 图像分为四组:设置 1(层厚/重建类型:1.25mm 锐利)、设置 2(5mm 锐利)、设置 3(5mm 平滑)和随机设置。我们根据两个交互条件创建了十二个子集。对每个 PN 进行分割,并提取了 1160 个放射组学特征。在每个子集下,选择具有高预测能力的非冗余特征来构建不同的模型。

结果

预测 PN 恶性肿瘤的性能(AUCs)如下:T1a 组:0.84、0.64、0.68 和 0.68;T1b 组:0.68、0.74、0.76 和 0.70;T1c 组:0.66、0.64、0.63 和 0.70,分别对应于设置 1、设置 2、设置 3 和随机设置。在 T1a 组中,设置 1 下的放射组学模型 AUC 显著高于其他组;在 T1b 组中,设置 3 下的放射组学模型 AUC 显著高于某些模型;在 T1c 组中,模型之间没有显著差异。

结论

对于小于 1cm 的 PNs,CT 图像采集参数对放射组学预测恶性肿瘤的诊断性能有显著影响,使用薄层和锐利核算法重建的图像创建的模型表现最佳。对于大于 1cm 的 PNs,CT 重建参数对诊断性能的影响不大。

关键点

  1. CT 图像采集参数对小于 1cm 的肺结节的放射组学诊断性能有显著影响。

  2. 在小于 1cm 的 PNs 中,使用薄层和锐利核算法重建的图像创建的放射组学模型具有最佳的诊断性能。

  3. 对于大于 1cm 的 PNs,CT 图像采集参数对诊断性能的影响不大。

相似文献

2
Application of Radiomics in Predicting the Malignancy of Pulmonary Nodules in Different Sizes.
AJR Am J Roentgenol. 2019 Dec;213(6):1213-1220. doi: 10.2214/AJR.19.21490. Epub 2019 Sep 26.
7
Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram.
Cancer Commun (Lond). 2020 Jan;40(1):16-24. doi: 10.1002/cac2.12002. Epub 2020 Mar 3.
8
Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules Using Computed Tomography Radiomics Parameters.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221119748. doi: 10.1177/15330338221119748.
9
Can Peritumoral Radiomics Improve the Prediction of Malignancy of Solid Pulmonary Nodule Smaller Than 2 cm?
Acad Radiol. 2022 Feb;29 Suppl 2:S47-S52. doi: 10.1016/j.acra.2020.10.029. Epub 2020 Nov 11.

引用本文的文献

4
Photon-Counting CT Scan Phantom Study: Stability of Radiomics Features.
Diagnostics (Basel). 2025 Mar 7;15(6):649. doi: 10.3390/diagnostics15060649.
8
Rank acquisition impact on radiomics estimation (AсquIRE) in chest CT imaging: A retrospective multi-site, multi-use-case study.
Comput Methods Programs Biomed. 2024 Feb;244:107990. doi: 10.1016/j.cmpb.2023.107990. Epub 2023 Dec 23.
9
Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images.
Eur Radiol. 2024 Jul;34(7):4218-4229. doi: 10.1007/s00330-023-10518-1. Epub 2023 Dec 20.

本文引用的文献

3
Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings.
Radiology. 2019 Dec;293(3):583-591. doi: 10.1148/radiol.2019190928. Epub 2019 Oct 1.
6
Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers.
Ann Oncol. 2019 Jun 1;30(6):998-1004. doi: 10.1093/annonc/mdz108.
7
Delta Radiomics Improves Pulmonary Nodule Malignancy Prediction in Lung Cancer Screening.
IEEE Access. 2018;6:77796-77806. doi: 10.1109/ACCESS.2018.2884126. Epub 2018 Nov 29.
9
Radiomics: the facts and the challenges of image analysis.
Eur Radiol Exp. 2018 Nov 14;2(1):36. doi: 10.1186/s41747-018-0068-z.
10
A Response Assessment Platform for Development and Validation of Imaging Biomarkers in Oncology.
Tomography. 2016 Dec;2(4):406-410. doi: 10.18383/j.tom.2016.00223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验