Suppr超能文献

基于足底压力分布图像的混合卷积神经网络在低残疾 MS 患者共济失调检测中的应用。

Detection of ataxia in low disability MS patients by hybrid convolutional neural networks based on images of plantar pressure distribution.

机构信息

Department of Neurology, Faculty of Medical, Fırat University, Elazığ, Turkey.

Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Fırat University, Elazığ, Turkey.

出版信息

Mult Scler Relat Disord. 2021 Nov;56:103261. doi: 10.1016/j.msard.2021.103261. Epub 2021 Sep 15.

Abstract

BACKGROUND

This study aimed to detect ataxia in patients with multiple sclerosis (PwMS) with a deep learning-based approach based on images showing plantar pressure distribution of the patients. The secondary aim of the study was to investigate an alternative and objective method in the early diagnosis of ataxia in these patients.

METHODS

A total of 105 images showing plantar pressure distribution of 43 ataxic PwMS and 62 healthy individuals were analyzed. The images were resized for the models including VGG16, VGG19, ResNet, DenseNet, MobileNet, NasNetMobile, and NasNetLarge. Feature vectors were extracted from the resized images and then classified using Support Vector Machines (SVM), K-Nearest Neighbors (K-NN), and Artificial Neural Network (ANN). A 10-fold cross-validation was applied to increase the validity of the classifiers.

RESULTS

The VGG19-SVM hybrid model showed the highest accuracy, sensitivity, and specificity values (89.23%, 89.65%, and 88.88%, respectively).

CONCLUSION

The proposed method provided an automatic decision support system for detecting ataxia based on images showing plantar pressure distribution in patients with PwMS. The performance of the proposed method indicated that this method can be applied in clinical practice to establish a rapid diagnosis of ataxia that is asymptomatic or difficult to detect clinically and that it can be recommended as a useful aid for the physician in clinical practice.

摘要

背景

本研究旨在通过基于患者足底压力分布图像的深度学习方法检测多发性硬化症患者(PwMS)的共济失调。该研究的次要目的是探索一种替代方法和客观方法,以早期诊断这些患者的共济失调。

方法

共分析了 43 例共济失调 PwMS 和 62 名健康个体的 105 张足底压力分布图像。对图像进行了重新调整大小,以包括 VGG16、VGG19、ResNet、DenseNet、MobileNet、NasNetMobile 和 NasNetLarge 等模型。从重新调整大小的图像中提取特征向量,然后使用支持向量机(SVM)、K-最近邻(K-NN)和人工神经网络(ANN)对其进行分类。应用 10 折交叉验证来提高分类器的有效性。

结果

VGG19-SVM 混合模型显示出最高的准确率、灵敏度和特异性值(分别为 89.23%、89.65%和 88.88%)。

结论

所提出的方法为基于患者足底压力分布图像检测 PwMS 患者的共济失调提供了一种自动决策支持系统。该方法的性能表明,该方法可应用于临床实践中,以建立对无症状或临床上难以检测到的共济失调的快速诊断,并且可以作为临床实践中医生的有用辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验