Zhao Andrew, Rubin Nicholas C, Miyake Akimasa
Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, USA.
Google Research, Mountain View, California 94043, USA.
Phys Rev Lett. 2021 Sep 10;127(11):110504. doi: 10.1103/PhysRevLett.127.110504.
We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of an n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting. Our sampling protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating all k-RDM elements to additive precision ϵ requires on the order of (n/k)k^{3/2}log(n)/ϵ^{2} repeated state preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial improvement in constant overheads for k≥2, as compared to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of roughly 2-5 times more repetitions.
我们提出了一种断层扫描协议,用于估计n模费米子态的任意k体约化密度矩阵(k-RDM),这是模拟多体物理、化学和材料的近期量子算法中普遍存在的一个步骤。我们的方法将经典影子的框架扩展到费米子环境,经典影子是一种用于学习量子态属性集合的随机方法。我们的采样协议使用由离散的费米子高斯酉群生成的随机测量设置,可通过线性深度电路实现。我们证明,要将所有k-RDM元素估计到加法精度ϵ,需要大约(n/k)k^{3/2}log(n)/ϵ^{2}次重复的态制备,这在对数因子范围内是最优的。此外,数值计算表明,与先前的确定性策略相比,对于k≥2,我们的协议在常数开销方面有显著改进。我们还将我们的方法应用于粒子数对称性,其中额外的电路深度可以减半,但代价是重复次数大约增加2至5倍。