Onishi Yuya, Hashimoto Fumio, Ote Kibo, Ohba Hiroyuki, Ota Ryosuke, Yoshikawa Etsuji, Ouchi Yasuomi
Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
Med Image Anal. 2021 Dec;74:102226. doi: 10.1016/j.media.2021.102226. Epub 2021 Sep 7.
Although supervised convolutional neural networks (CNNs) often outperform conventional alternatives for denoising positron emission tomography (PET) images, they require many low- and high-quality reference PET image pairs. Herein, we propose an unsupervised 3D PET image denoising method based on an anatomical information-guided attention mechanism. The proposed magnetic resonance-guided deep decoder (MR-GDD) utilizes the spatial details and semantic features of MR-guidance image more effectively by introducing encoder-decoder and deep decoder subnetworks. Moreover, the specific shapes and patterns of the guidance image do not affect the denoised PET image, because the guidance image is input to the network through an attention gate. In a Monte Carlo simulation of [F]fluoro-2-deoxy-D-glucose (FDG), the proposed method achieved the highest peak signal-to-noise ratio and structural similarity (27.92 ± 0.44 dB/0.886 ± 0.007), as compared with Gaussian filtering (26.68 ± 0.10 dB/0.807 ± 0.004), image guided filtering (27.40 ± 0.11 dB/0.849 ± 0.003), deep image prior (DIP) (24.22 ± 0.43 dB/0.737 ± 0.017), and MR-DIP (27.65 ± 0.42 dB/0.879 ± 0.007). Furthermore, we experimentally visualized the behavior of the optimization process, which is often unknown in unsupervised CNN-based restoration problems. For preclinical (using [F]FDG and [C]raclopride) and clinical (using [F]florbetapir) studies, the proposed method demonstrates state-of-the-art denoising performance while retaining spatial resolution and quantitative accuracy, despite using a common network architecture for various noisy PET images with 1/10th of the full counts. These results suggest that the proposed MR-GDD can reduce PET scan times and PET tracer doses considerably without impacting patients.
尽管有监督的卷积神经网络(CNN)在正电子发射断层扫描(PET)图像去噪方面通常优于传统方法,但它们需要许多低质量和高质量的参考PET图像对。在此,我们提出了一种基于解剖信息引导注意力机制的无监督3D PET图像去噪方法。所提出的磁共振引导深度解码器(MR-GDD)通过引入编码器-解码器和深度解码器子网,更有效地利用了磁共振引导图像的空间细节和语义特征。此外,引导图像的特定形状和模式不会影响去噪后的PET图像,因为引导图像是通过注意力门输入到网络中的。在[F]氟代脱氧葡萄糖(FDG)的蒙特卡罗模拟中,与高斯滤波(26.68±0.10 dB/0.807±0.004)、图像引导滤波(27.40±0.11 dB/0.849±0.003)、深度图像先验(DIP)(24.22±0.43 dB/0.737±0.017)和MR-DIP(27.65±0.42 dB/0.879±0.007)相比,所提出的方法实现了最高的峰值信噪比和结构相似性(27.92±0.44 dB/0.886±0.007)。此外,我们通过实验可视化了优化过程的行为,这在基于无监督CNN的恢复问题中通常是未知的。对于临床前(使用[F]FDG和[C]雷氯必利)和临床(使用[F]氟贝他匹)研究,尽管使用了通用网络架构处理全计数的1/10的各种噪声PET图像,但所提出的方法在保持空间分辨率和定量准确性的同时,展示了最先进的去噪性能。这些结果表明,所提出的MR-GDD可以在不影响患者的情况下,显著减少PET扫描时间和PET示踪剂剂量。