Suppr超能文献

一种无参数的神经元响应统计检验方法。

A parameter-free statistical test for neuronal responsiveness.

机构信息

Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.

出版信息

Elife. 2021 Sep 27;10:e71969. doi: 10.7554/eLife.71969.

Abstract

Neurophysiological studies depend on a reliable quantification of whether and when a neuron responds to stimulation. Simple methods to determine responsiveness require arbitrary parameter choices, such as binning size, while more advanced model-based methods require fitting and hyperparameter tuning. These parameter choices can change the results, which invites bad statistical practice and reduces the replicability. New recording techniques that yield increasingly large numbers of cells would benefit from a test for cell-inclusion that requires no manual curation. Here, we present the parameter-free ZETA-test, which outperforms t-tests, ANOVAs, and renewal-process-based methods by including more cells at a similar false-positive rate. We show that our procedure works across brain regions and recording techniques, including calcium imaging and Neuropixels data. Furthermore, in illustration of the method, we show in mouse visual cortex that (1) visuomotor-mismatch and spatial location are encoded by different neuronal subpopulations and (2) optogenetic stimulation of VIP cells leads to early inhibition and subsequent disinhibition.

摘要

神经生理学研究依赖于可靠地量化神经元是否以及何时对刺激做出反应。简单的确定反应性的方法需要任意的参数选择,例如分箱大小,而更先进的基于模型的方法需要拟合和超参数调整。这些参数选择会改变结果,这导致了不良的统计实践,并降低了可重复性。越来越多的新记录技术产生了大量的细胞,这将受益于一种不需要人工管理的细胞纳入测试。在这里,我们提出了无参数的 ZETA 测试,它通过纳入更多的细胞,在类似的假阳性率下,优于 t 检验、方差分析和基于更新过程的方法。我们表明,我们的程序适用于不同的脑区和记录技术,包括钙成像和 Neuropixels 数据。此外,为了说明该方法,我们在小鼠视觉皮层中表明:(1) 视觉运动不匹配和空间位置由不同的神经元亚群编码;(2) VIP 细胞的光遗传学刺激导致早期抑制和随后的去抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a7/8626082/7c9549c8de06/elife-71969-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验