Suppr超能文献

用于理解可移动遗传元件调控的生物信息学和机器学习方法。

Bioinformatics and Machine Learning Approaches to Understand the Regulation of Mobile Genetic Elements.

作者信息

Giassa Ilektra-Chara, Alexiou Panagiotis

机构信息

Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic.

出版信息

Biology (Basel). 2021 Sep 10;10(9):896. doi: 10.3390/biology10090896.

Abstract

Transposable elements (TEs, or mobile genetic elements, MGEs) are ubiquitous genetic elements that make up a substantial proportion of the genome of many species. The recent growing interest in understanding the evolution and function of TEs has revealed that TEs play a dual role in genome evolution, development, disease, and drug resistance. Cells regulate TE expression against uncontrolled activity that can lead to developmental defects and disease, using multiple strategies, such as DNA chemical modification, small RNA (sRNA) silencing, chromatin modification, as well as sequence-specific repressors. Advancements in bioinformatics and machine learning approaches are increasingly contributing to the analysis of the regulation mechanisms. A plethora of tools and machine learning approaches have been developed for prediction, annotation, and expression profiling of sRNAs, for methylation analysis of TEs, as well as for genome-wide methylation analysis through bisulfite sequencing data. In this review, we provide a guided overview of the bioinformatic and machine learning state of the art of fields closely associated with TE regulation and function.

摘要

转座元件(TEs,或移动遗传元件,MGEs)是普遍存在的遗传元件,在许多物种的基因组中占相当大的比例。最近,人们对理解转座元件的进化和功能的兴趣日益浓厚,这揭示了转座元件在基因组进化、发育、疾病和耐药性方面发挥着双重作用。细胞利用多种策略,如DNA化学修饰、小RNA(sRNA)沉默、染色质修饰以及序列特异性阻遏物,来调节转座元件的表达,防止其不受控制的活动导致发育缺陷和疾病。生物信息学和机器学习方法的进步越来越有助于对调控机制的分析。已经开发了大量工具和机器学习方法,用于小RNA的预测、注释和表达谱分析,转座元件的甲基化分析,以及通过亚硫酸氢盐测序数据进行全基因组甲基化分析。在这篇综述中,我们对与转座元件调控和功能密切相关领域的生物信息学和机器学习技术现状进行了有指导意义的概述。

相似文献

1
Bioinformatics and Machine Learning Approaches to Understand the Regulation of Mobile Genetic Elements.
Biology (Basel). 2021 Sep 10;10(9):896. doi: 10.3390/biology10090896.
6
Regulation of genome-wide DNA methylation by mobile small RNAs.
New Phytol. 2018 Jan;217(2):540-546. doi: 10.1111/nph.14874. Epub 2017 Nov 6.
8
Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.
Genomics Proteomics Bioinformatics. 2017 Jun;15(3):164-176. doi: 10.1016/j.gpb.2017.01.006. Epub 2017 Jun 8.
10
The Role of piRNA-Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in Drosophila melanogaster.
PLoS Genet. 2015 Jun 4;11(6):e1005269. doi: 10.1371/journal.pgen.1005269. eCollection 2015 Jun.

本文引用的文献

2
Genomic properties of variably methylated retrotransposons in mouse.
Mob DNA. 2021 Feb 21;12(1):6. doi: 10.1186/s13100-021-00235-1.
3
Role of Transposable Elements in Gene Regulation in the Human Genome.
Life (Basel). 2021 Feb 4;11(2):118. doi: 10.3390/life11020118.
4
Transposable element regulation and expression in cancer.
FEBS J. 2022 Mar;289(5):1160-1179. doi: 10.1111/febs.15722. Epub 2021 Feb 13.
6
PCirc: random forest-based plant circRNA identification software.
BMC Bioinformatics. 2021 Jan 6;22(1):10. doi: 10.1186/s12859-020-03944-1.
7
8
Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress.
New Phytol. 2021 Feb;229(4):2238-2250. doi: 10.1111/nph.17018. Epub 2020 Nov 22.
9
RNA-directed DNA Methylation.
PLoS Genet. 2020 Oct 8;16(10):e1009034. doi: 10.1371/journal.pgen.1009034. eCollection 2020 Oct.
10
Host Gene Regulation by Transposable Elements: The New, the Old and the Ugly.
Viruses. 2020 Sep 26;12(10):1089. doi: 10.3390/v12101089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验