Rashidi M M, Sadri M, Sheremet M A
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
Faculty of Mechanical and Industrial Engineering, Quchan University of Technology, Quchan, Iran.
Nanomaterials (Basel). 2021 Aug 31;11(9):2250. doi: 10.3390/nano11092250.
In this study, the energy transference of a hybrid AlO-Cu-HO nanosuspension within a lid-driven heated square chamber is simulated. The domain is affected by a horizontal magnetic field. The vertical sidewalls are insulated and the horizontal borders of the chamber are held at different fixed temperatures. A fourth-order accuracy compact method is applied to work out the vorticity-stream function view of incompressible Oberbeck-Boussinesq equations. The method used is validated against previous numerical and experimental works and good agreement is shown. The flow patterns, Nusselt numbers, and velocity profiles are studied for different Richardson numbers, Hartmann numbers, and the solid volume fraction of hybrid nanoparticles. Flow field and heat convection are highly affected by the magnetic field and volume fraction of each type of nanoparticles in a hybrid nanofluid. The results show an improvement of heat transfer using nanoparticles. To achieve a higher heat transmission rate by using the hybrid nanofluid, flow parameters like Richardson number and Hartmann number should be considered.
在本研究中,模拟了混合AlO-Cu-HO纳米悬浮液在顶盖驱动的加热方形腔内的能量传递。该区域受到水平磁场的影响。垂直侧壁是绝热的,腔室的水平边界保持在不同的固定温度。采用四阶精度紧致方法求解不可压缩奥伯贝克-布西涅斯克方程的涡度-流函数形式。所使用的方法与先前的数值和实验工作进行了验证,并显示出良好的一致性。研究了不同理查森数、哈特曼数和混合纳米颗粒的固体体积分数下的流动模式、努塞尔数和速度剖面。混合纳米流体中的磁场和每种纳米颗粒的体积分数对流场和热对流有很大影响。结果表明使用纳米颗粒可改善传热。为了通过使用混合纳米流体实现更高的热传递速率,应考虑理查森数和哈特曼数等流动参数。