Biostatistics Research Unit, South African Medical Research Council, Durban 4001, South Africa.
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa.
Nutrients. 2021 Sep 14;13(9):3194. doi: 10.3390/nu13093194.
Food composition databases (FCDBs) provide the nutritional content of foods and are essential for developing nutrition guidance and effective intervention programs to improve nutrition of a population. In public and nutritional health research studies, FCDBs are used in the estimation of nutrient intake profiles at the population levels. However, such studies investigating nutrient co-occurrence and profile patterns within the African context are very rare. This study aimed to identify nutrient co-occurrence patterns within the South African FCDB (SAFCDB). A principal component analysis (PCA) was applied to 28 nutrients and 971 foods in the South African FCDB to determine compositionally similar food items. A second principal component analysis was applied to the food items for validation. Eight nutrient patterns (NPs) explaining 73.4% of the nutrient variation among foods were identified: (1) high magnesium and manganese; (2) high copper and vitamin B; (3) high animal protein, niacin, and vitamin B; (4) high fatty acids and vitamin E; (5) high calcium, phosphorous and sodium; (6) low moisture and high available carbohydrate; (7) high cholesterol and vitamin D; and (8) low zinc and high vitamin C. Similar food patterns (FPs) were identified from a PCA on food items, yielding subgroups such as dark-green, leafy vegetables and, orange-coloured fruit and vegetables. One food pattern was associated with high sodium levels and contained bread, processed meat and seafood, canned vegetables, and sauces. The data-driven nutrient and food patterns found in this study were consistent with and support the South African food-based dietary guidelines and the national salt regulations.
食物成分数据库(FCDB)提供食物的营养成分,是制定营养指导和有效干预计划以改善人群营养状况的基础。在公共和营养健康研究中,FCDB 用于估计人群水平的营养素摄入量分布。然而,在非洲背景下研究营养素共同出现和分布模式的研究非常少见。本研究旨在确定南非食物成分数据库(SAFCDB)中的营养素共同出现模式。应用主成分分析(PCA)对南非食物成分数据库中的 28 种营养素和 971 种食物进行分析,以确定成分相似的食物。然后对食物进行第二次主成分分析进行验证。确定了 8 种解释食物中营养素差异 73.4%的营养素模式(NPs):(1)高镁和锰;(2)高铜和维生素 B;(3)高动物蛋白、烟酸和维生素 B;(4)高脂肪酸和维生素 E;(5)高钙、磷和钠;(6)低水分和高可利用碳水化合物;(7)高胆固醇和维生素 D;(8)低锌和高维生素 C。通过对食物进行 PCA 分析,确定了类似的食物模式(FPs),形成了一些亚组,如深绿色叶菜类和橙色水果和蔬菜。一个与高钠水平相关的食物模式包含面包、加工肉类和海鲜、罐装蔬菜和酱汁。本研究中发现的基于数据的营养素和食物模式与南非基于食物的膳食指南和国家盐规一致,并为其提供了支持。