Sato Akinori, Miyao Tomoyuki, Funatsu Kimito
Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
Mol Inform. 2022 Feb;41(2):e2100156. doi: 10.1002/minf.202100156. Epub 2021 Sep 29.
Chemical reaction yield is one of the most important factors for determining reaction conditions. Recently, several machine learning-based prediction models using high-throughput experiment (HTE) data sets were reported for the prediction of reaction yield. However, none of them were at a practical level in terms of predictive ability. In this study, we propose a message passing neural network (MPNN) model for chemical yield prediction, focusing on the Buchwald-Hartwig cross-coupling HTE data set. As an initial atom embedding in MPNN model, we propose to use the Mol2Vec feature vectors pre-trained using a large compound database. Predictive ability of the proposed model was higher than that of previously reported five models for the three out of five data sets. Moreover, visualization of important atoms based on self-attention mechanism was in favor of Mol2Vec as an atom embedding rather than other embeddings including previously employed simple representations.
化学反应产率是确定反应条件的最重要因素之一。最近,有报道称利用高通量实验(HTE)数据集建立了几个基于机器学习的预测模型来预测反应产率。然而,就预测能力而言,它们都未达到实际应用水平。在本研究中,我们提出了一种用于化学产率预测的消息传递神经网络(MPNN)模型,重点关注布赫瓦尔德-哈特维希交叉偶联HTE数据集。作为MPNN模型中的初始原子嵌入,我们建议使用通过大型化合物数据库预训练的Mol2Vec特征向量。在所提出的模型中,对于五个数据集中的三个,其预测能力高于先前报道的五个模型。此外,基于自注意力机制的重要原子可视化表明,Mol2Vec作为原子嵌入比其他嵌入(包括先前使用的简单表示)更具优势。