Department of Psychology, University of Virginia, 102 Gilmer Hall, Charlottesville, VA, 22903, USA.
Department of Statistics, University of Virginia, 113 Halsey Hall, Charlottesville, VA, 22903, USA.
Behav Res Methods. 2022 Jun;54(3):1291-1305. doi: 10.3758/s13428-021-01655-w. Epub 2021 Sep 29.
Growth mixture modeling is a common tool for longitudinal data analysis. One of the key assumptions of traditional growth mixture modeling is that repeated measures within each class are normally distributed. When this normality assumption is violated, traditional growth mixture modeling may provide misleading model estimation results and suffer from nonconvergence. In this article, we propose a robust approach to growth mixture modeling based on conditional medians and use Bayesian methods for model estimation and inferences. A simulation study is conducted to evaluate the performance of this approach. It is found that the new approach has a higher convergence rate and less biased parameter estimation than the traditional growth mixture modeling approach when data are skewed or have outliers. An empirical data analysis is also provided to illustrate how the proposed method can be applied in practice.
增长混合模型是一种用于纵向数据分析的常用工具。传统增长混合模型的一个关键假设是每个类内的重复测量值呈正态分布。当这种正态性假设被违反时,传统的增长混合模型可能会提供误导性的模型估计结果,并出现不收敛的情况。在本文中,我们提出了一种基于条件中位数的稳健增长混合模型方法,并使用贝叶斯方法进行模型估计和推断。通过模拟研究评估了这种方法的性能。结果发现,当数据存在偏态或异常值时,新方法比传统的增长混合模型方法具有更高的收敛速度和更小的参数估计偏差。还提供了一个实证数据分析来说明如何在实践中应用所提出的方法。