Xue Honghu, Herzog Rebecca, Berger Till M, Bäumer Tobias, Weissbach Anne, Rueckert Elmar
Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany.
Institute of Systems Motor Science, University of Luebeck, Luebeck, Germany.
Front Robot AI. 2021 Sep 14;8:721890. doi: 10.3389/frobt.2021.721890. eCollection 2021.
In medical tasks such as human motion analysis, computer-aided auxiliary systems have become the preferred choice for human experts for their high efficiency. However, conventional approaches are typically based on user-defined features such as movement onset times, peak velocities, motion vectors, or frequency domain analyses. Such approaches entail careful data post-processing or specific domain knowledge to achieve a meaningful feature extraction. Besides, they are prone to noise and the manual-defined features could hardly be re-used for other analyses. In this paper, we proposed (ProMPs), a widely-used approach in robot skill learning, to model human motions. The benefit of ProMPs is that the features are directly learned from the data and ProMPs can capture important features describing the trajectory shape, which can easily be extended to other tasks. Distinct from previous research, where classification tasks are mostly investigated, we applied ProMPs together with a variant of Kullback-Leibler (KL) divergence to quantify the effect of different methods on human motions. We presented an initial result with 10 participants. The results validate ProMPs as a robust and effective feature extractor for human motions.
在诸如人体运动分析等医学任务中,计算机辅助辅助系统因其高效性已成为人类专家的首选。然而,传统方法通常基于用户定义的特征,如运动起始时间、峰值速度、运动向量或频域分析。此类方法需要仔细的数据后处理或特定领域知识才能实现有意义的特征提取。此外,它们容易受到噪声影响,且手动定义的特征几乎无法用于其他分析。在本文中,我们提出了一种在机器人技能学习中广泛使用的方法(ProMPs)来对人体运动进行建模。ProMPs的优势在于其特征直接从数据中学习,并且ProMPs能够捕捉描述轨迹形状的重要特征,这可以轻松扩展到其他任务。与以往主要研究分类任务的研究不同,我们将ProMPs与Kullback-Leibler(KL)散度的一种变体一起应用,以量化不同方法对人体运动的影响。我们展示了10名参与者的初步结果。结果验证了ProMPs作为一种用于人体运动的强大且有效的特征提取器。