Telethon Kids Institute, The University of Western Australia, Perth, Australia.
Department of Respiratory Medicine, Princess Margaret Hospital, Perth, Australia.
Pediatr Pulmonol. 2022 Jan;57(1):122-131. doi: 10.1002/ppul.25712. Epub 2021 Oct 12.
The marked heterogeneity in cystic fibrosis (CF) disease complicates the selection of those most likely to benefit from existing or emergent treatments.
We aimed to predict the progression of bronchiectasis in preschool children with CF.
Using data collected up to 3 years of age, in the Australian Respiratory Early Surveillance Team for CF cohort study, clinical information, chest computed tomography (CT) scores, and biomarkers from bronchoalveolar lavage were assessed in a multivariable linear regression model as predictors for CT bronchiectasis at age 5-6.
Follow-up at 5-6 years was available in 171 children. Bronchiectasis prevalence at 5-6 was 134/171 (78%) and median bronchiectasis score was 3 (range 0-12). The internally validated multivariate model retained eight independent predictors accounting for 37% (adjusted R ) of the variance in bronchiectasis score. The strongest predictors of future bronchiectasis were: pancreatic insufficiency, repeated intravenous treatment courses, recurrent lower respiratory infections in the first 3 years of life, and lower airway inflammation. Dichotomizing the resulting prediction score at a bronchiectasis score of above the median resulted in a diagnostic odds ratio of 13 (95% confidence interval [CI], 6.3-27) with positive and negative predictive values of 80% (95% CI, 72%-86%) and 77% (95% CI, 69%-83%), respectively.
Early assessment of bronchiectasis risk in children with CF is feasible with reasonable precision at a group level, which can assist in high-risk patient selection for interventional trials. The unexplained variability in disease progression at individual patient levels remains high, limiting the use of this model as a clinical prediction tool.
囊性纤维化(CF)疾病存在明显异质性,这使得选择最有可能从现有或新出现的治疗中获益的患者变得复杂。
我们旨在预测 CF 学龄前儿童支气管扩张症的进展。
在澳大利亚 CF 早期监测团队队列研究中,使用截至 3 岁时收集的数据,通过多变量线性回归模型评估临床信息、胸部计算机断层扫描(CT)评分和支气管肺泡灌洗液中的生物标志物,作为 5-6 岁时 CT 支气管扩张症的预测因子。
171 名儿童可进行 5-6 岁时的随访。5-6 岁时支气管扩张症的患病率为 134/171(78%),中位数支气管扩张症评分为 3(范围 0-12)。内部验证的多变量模型保留了 8 个独立的预测因子,占支气管扩张症评分变异的 37%(调整后的 R )。未来支气管扩张症的最强预测因子是:胰腺功能不全、反复静脉内治疗疗程、生命前 3 年反复下呼吸道感染和下呼吸道炎症。将由此产生的预测评分的分界点设定为中位数以上的支气管扩张症评分,支气管扩张症的诊断比值比为 13(95%置信区间[CI],6.3-27),阳性和阴性预测值分别为 80%(95%CI,72%-86%)和 77%(95%CI,69%-83%)。
在群体水平上,对 CF 患儿的支气管扩张症风险进行早期评估具有合理的准确性,可以协助高危患者选择干预性试验。但个体患者水平的疾病进展的不可解释变异性仍然很高,限制了该模型作为临床预测工具的使用。