Suppr超能文献

使用计算方法描绘百里醌在ESKAPE病原体中的潜在靶点。

Delineating the potential targets of thymoquinone in ESKAPE pathogens using a computational approach.

作者信息

Girija A S Smiline, Gnanendra S, Paramasivam A, Priyadharsini J Vijayashree

机构信息

Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences [SIMATS], P.H.Road, Chennai, Tamil Nadu 600077 India.

Microbial Genomics Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea.

出版信息

In Silico Pharmacol. 2021 Sep 17;9(1):52. doi: 10.1007/s40203-021-00111-z. eCollection 2021.

Abstract

The present study was designed to identify and analyze the targets of thymoquinone on drug resistant pathogens employing in silico tools. The target identification was performed using STITCH tool, followed by the functional analysis of protein targets by VICMPred. Further, VirulentPred was used to determine the nature of virulence of target proteins. The putative epitopes present on the virulent proteins were identified using BepiPred tool. The subcellular location of the virulent proteins was assessed using PSORTb. The results showed multiple targets of the pathogens being targeted. The nitric-oxide synthase-like protein of and acetyltransferase family protein, histone acetyltransferase HPA2, GNAT family acetyltransferase of was found to be the virulent proteins interacting with thymoquinone. Molinspiration assessments showed zero violations suggesting the druggability of TQ. The study unveils the molecular mechanisms underlying the antimicrobial effect of thymoquinone as demonstrated by in silico procedures.

摘要

本研究旨在利用计算机工具鉴定和分析百里醌对耐药病原体的作用靶点。使用STITCH工具进行靶点鉴定,随后通过VICMPred对蛋白质靶点进行功能分析。此外,使用VirulentPred确定靶点蛋白的毒力性质。使用BepiPred工具鉴定毒力蛋白上存在的推定表位。使用PSORTb评估毒力蛋白的亚细胞定位。结果显示病原体的多个靶点被靶向。发现[具体物种]的一氧化氮合酶样蛋白和乙酰转移酶家族蛋白、组蛋白乙酰转移酶HPA2、[具体物种]的GNAT家族乙酰转移酶是与百里醌相互作用的毒力蛋白。Molinspiration评估显示无违规情况,表明百里醌具有成药潜力。该研究揭示了计算机程序所证明的百里醌抗菌作用的分子机制。

相似文献

1
Delineating the potential targets of thymoquinone in ESKAPE pathogens using a computational approach.
In Silico Pharmacol. 2021 Sep 17;9(1):52. doi: 10.1007/s40203-021-00111-z. eCollection 2021.
4
An in silico approach towards identification of virulence factors in red complex pathogens targeted by reserpine.
Nat Prod Res. 2021 Jun;35(11):1893-1898. doi: 10.1080/14786419.2019.1641811. Epub 2019 Jul 17.
6
Identification and Functional Annotation of Hypothetical Proteins of Pan-Drug-Resistant Strain MRSN845308 Toward Designing Antimicrobial Drug Targets.
Bioinform Biol Insights. 2024 Sep 23;18:11779322241280580. doi: 10.1177/11779322241280580. eCollection 2024.
8
A. baumannii histone acetyl transferase Hpa2: optimization of homology modeling, analysis of protein-protein interaction and virtual screening.
J Biomol Struct Dyn. 2017 Apr;35(5):1115-1126. doi: 10.1080/07391102.2016.1172025. Epub 2016 Jul 15.
9
Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital.
Infect Drug Resist. 2021 Jun 14;14:2201-2212. doi: 10.2147/IDR.S306688. eCollection 2021.
10
Delineating the Immuno-Dominant Antigenic Vaccine Peptides Against gacSSensor Kinase in : An Investigational Approach.
Front Microbiol. 2020 Sep 8;11:2078. doi: 10.3389/fmicb.2020.02078. eCollection 2020.

本文引用的文献

1
NADPH-dependent sulfite reductase flavoprotein adopts an extended conformation unique to this diflavin reductase.
J Struct Biol. 2019 Feb 1;205(2):170-179. doi: 10.1016/j.jsb.2019.01.001. Epub 2019 Jan 15.
3
Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
Lancet Infect Dis. 2018 Mar;18(3):318-327. doi: 10.1016/S1473-3099(17)30753-3. Epub 2017 Dec 21.
4
Therapeutic Potential and Pharmaceutical Development of Thymoquinone: A Multitargeted Molecule of Natural Origin.
Front Pharmacol. 2017 Sep 21;8:656. doi: 10.3389/fphar.2017.00656. eCollection 2017.
5
BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes.
Nucleic Acids Res. 2017 Jul 3;45(W1):W24-W29. doi: 10.1093/nar/gkx346.
6
Assessment of Antibacterial Activity and Cytotoxicity Effect of Oil.
Pharmacogn Mag. 2016 Jul;12(Suppl 4):S471-S474. doi: 10.4103/0973-1296.191459.
7
Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens.
Biomed Res Int. 2016;2016:2475067. doi: 10.1155/2016/2475067. Epub 2016 May 5.
8
A. baumannii histone acetyl transferase Hpa2: optimization of homology modeling, analysis of protein-protein interaction and virtual screening.
J Biomol Struct Dyn. 2017 Apr;35(5):1115-1126. doi: 10.1080/07391102.2016.1172025. Epub 2016 Jul 15.
9
STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data.
Nucleic Acids Res. 2016 Jan 4;44(D1):D380-4. doi: 10.1093/nar/gkv1277. Epub 2015 Nov 20.
10
Structural basis for the catalytic mechanism of homoserine dehydrogenase.
Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1216-25. doi: 10.1107/S1399004715004617. Epub 2015 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验