Suppr超能文献

光控双分子反应:长寿命罗丹明 6G 三重态与˙NO 的反应性。

Photo-control of bimolecular reactions: reactivity of the long-lived Rhodamine 6G triplet excited state with ˙NO.

机构信息

Univ Lyon, Université Claude Bernard Lyon 1, CNRS - Institut Lumière Matière (iLM), F-69622, LYON, France.

Division of Chemistry and Materials Science, Nagasaki University - 1-14 Bunkyo, Nagasaki, 852-8521, Japan.

出版信息

Phys Chem Chem Phys. 2021 Nov 17;23(44):25038-25047. doi: 10.1039/d1cp02626g.

Abstract

Photo-chemistry provides a non-intuitive but very powerful way to probe kinetically limited, sometimes thermodynamically non-favored reactions and, thus, access highly specific products. However, reactivity in the excited state is difficult to characterize directly, due to short lifetimes and challenges in controlling the reaction medium. Among photo-activatable reagents, rhodamine dyes find widespread uses due to a number of favorable properties including their high absorption coefficient. Their readily adaptable synthesis allows development of tailor-made dyes for specific applications. Remarkably, few studies have directly probed the chemical reactivity of their triplet excited state. Here we present a new conceptual approach to examine the specific chemistry of the triplet excited state. We have developed a pump (488 nm) - probe (600 nm) strategy to examine the gas-phase lifetime and reactivity of the triplet cation of Rhodamine 6G (Rh6G) in an ion trap mass spectrometer. The confounding effects of solvent, aggregation and formation of other reactive intermediates is thus avoided allowing fundamental reactivity to be explored. In the presence, in the ion trap, of helium seeded with 1% of nitric oxide (˙NO) (∼ 60 ion/˙NO collisions per second), the triplet lifetime is shortened from 1.9 s to 0.7 s. Simultaneously, the reaction products [Rh6G-H]˙ and [Rh6G-H + NO] are observed. Reaction of Rh6G with ˙NO yields [Rh6G-H]˙, [Rh6G-H + NO] and [Rh6G-2H]. None of these products are observed for the singlet, Rh6G. DFT calculations suggest a stepwise mechanism only allowed from Rh6G, in which H atom abstraction by ˙NO ( = 1 or 2) yields [Rh6G-H]˙ which, then, reacts with another ˙NO molecule. This illustrates the power of light to initiate specific chemical reactions, and the relevance of gas-phase ion-molecule reaction approaches to understand stepwise reaction mechanism from specific excited states.

摘要

光化学提供了一种非直观但非常强大的方法来探测动力学受限的、有时热力学上不利的反应,从而获得高度特异性的产物。然而,由于激发态的寿命短和控制反应介质的挑战,激发态的反应性很难直接表征。在光活化试剂中,由于其高吸收系数,罗丹明染料因其许多优良性质而得到广泛应用。它们易于适应的合成方法允许为特定应用开发定制染料。值得注意的是,很少有研究直接探测它们三重态激发态的化学活性。在这里,我们提出了一种新的概念方法来研究三重态激发态的特定化学。我们开发了一种泵(488nm)-探针(600nm)策略,在离子阱质谱仪中研究罗丹明 6G(Rh6G)三重态阳离子的气相寿命和反应性。因此,避免了溶剂、聚集和形成其他反应性中间体的混杂影响,从而可以探索基本反应性。在存在氦气的情况下,氦气中含有 1%的一氧化氮(˙NO)(每秒约有 60 个离子/˙NO 碰撞),三重态寿命从 1.9s 缩短到 0.7s。同时,观察到反应产物[Rh6G-H]˙和[Rh6G-H+NO]。Rh6G 与˙NO 的反应生成[Rh6G-H]˙、[Rh6G-H+NO]和[Rh6G-2H]。对于单重态 Rh6G,这些产物都没有观察到。DFT 计算表明,只有 Rh6G 允许逐步机制,其中˙NO(=1 或 2)通过 H 原子抽提生成[Rh6G-H]˙,然后与另一个˙NO 分子反应。这说明了光引发特定化学反应的威力,以及气相离子-分子反应方法对于理解特定激发态的逐步反应机制的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验