Suppr超能文献

2-酰氨基和 2-硫代酰氨基取代 1-苯并[]咪唑衍生物的合成、杀菌活性及作为微管蛋白抑制剂的分子对接。

Synthesis, Fungicidal Activity, and Molecular Docking of 2-Acylamino and 2-Thioacylamino Derivatives of 1-benzo[]imidazoles as Anti-Tubulin Agents.

机构信息

Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia.

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

出版信息

J Agric Food Chem. 2021 Oct 13;69(40):12048-12062. doi: 10.1021/acs.jafc.1c03325. Epub 2021 Oct 5.

Abstract

This work deals with the synthesis and evaluation of fungicidal activity of benzimidazole derivatives, which are structural analogues of commercial anti-tubulin fungicides. A number of -acyl and -thioacyl derivatives of 2-amino-1-benzo[]imidazole were prepared, and their fungicidal activity against 13 strains of phytopathogenic fungi was studied. The most active compounds against the majority of the studied strains were , , and , and the EC values of these compounds were in the range 2.5-20 μg/mL. Compound showed the highest activity against the strain, the growth of which is not suppressed by carbendazim. The formation of ligand-receptor complexes of various tautomeric forms of the studied benzimidazoles with homologous models of β-tubulins of , , and was modeled. Induced fit docking has been used for the simulation. The obtained data suggest the possibility of binding of benzimidazole fungicides to β-tubulin in the ″nocodazole cavity″ in the tautomeric form bearing a double exocyclic C═N bond. The importance of the formation of hydrogen bonds of benzimidazoles with the amino acid residue Val236 along with the Glu198 residue is also revealed in the present study.

摘要

这项工作涉及苯并咪唑衍生物的合成和杀菌活性评估,这些衍生物是商业抗微管蛋白杀菌剂的结构类似物。合成了一系列 2-氨基-1-苯并[]咪唑的 -酰基和 -硫代酰基衍生物,并研究了它们对 13 种植物病原真菌的杀菌活性。对大多数研究菌株最具活性的化合物是 、 、和 ,这些化合物的 EC 值在 2.5-20μg/mL 范围内。化合物 对 菌株表现出最高的活性,而多菌灵不能抑制该菌株的生长。对所研究的苯并咪唑的各种互变异构形式与同源模型的配体-受体复合物进行建模,使用诱导契合对接进行模拟。获得的数据表明,苯并咪唑杀菌剂有可能以带有双环外 C=N 键的互变异构形式结合到β-微管蛋白的“诺考达唑腔”中。本研究还揭示了苯并咪唑与氨基酸残基 Val236 以及 Glu198 形成氢键的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验