Suppr超能文献

《轮班工作者中 Fitbit Charge 2 睡眠和心率估计值与多导睡眠图测量值的验证:自然研究》。

Validation of Fitbit Charge 2 Sleep and Heart Rate Estimates Against Polysomnographic Measures in Shift Workers: Naturalistic Study.

机构信息

Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.

Sleep & Health Zurich, University Center of Competence, University of Zurich, Switzerland.

出版信息

J Med Internet Res. 2021 Oct 5;23(10):e26476. doi: 10.2196/26476.

Abstract

BACKGROUND

Multisensor fitness trackers offer the ability to longitudinally estimate sleep quality in a home environment with the potential to outperform traditional actigraphy. To benefit from these new tools for objectively assessing sleep for clinical and research purposes, multisensor wearable devices require careful validation against the gold standard of sleep polysomnography (PSG). Naturalistic studies favor validation.

OBJECTIVE

This study aims to validate the Fitbit Charge 2 against portable home PSG in a shift-work population composed of 59 first responder police officers and paramedics undergoing shift work.

METHODS

A reliable comparison between the two measurements was ensured through the data-driven alignment of a PSG and Fitbit time series that was recorded at night. Epoch-by-epoch analyses and Bland-Altman plots were used to assess sensitivity, specificity, accuracy, the Matthews correlation coefficient, bias, and limits of agreement.

RESULTS

Sleep onset and offset, total sleep time, and the durations of rapid eye movement (REM) sleep and non-rapid-eye movement sleep stages N1+N2 and N3 displayed unbiased estimates with nonnegligible limits of agreement. In contrast, the proprietary Fitbit algorithm overestimated REM sleep latency by 29.4 minutes and wakefulness after sleep onset (WASO) by 37.1 minutes. Epoch-by-epoch analyses indicated better specificity than sensitivity, with higher accuracies for WASO (0.82) and REM sleep (0.86) than those for N1+N2 (0.55) and N3 (0.78) sleep. Fitbit heart rate (HR) displayed a small underestimation of 0.9 beats per minute (bpm) and a limited capability to capture sudden HR changes because of the lower time resolution compared to that of PSG. The underestimation was smaller in N2, N3, and REM sleep (0.6-0.7 bpm) than in N1 sleep (1.2 bpm) and wakefulness (1.9 bpm), indicating a state-specific bias. Finally, Fitbit suggested a distribution of all sleep episode durations that was different from that derived from PSG and showed nonbiological discontinuities, indicating the potential limitations of the staging algorithm.

CONCLUSIONS

We conclude that by following careful data processing processes, the Fitbit Charge 2 can provide reasonably accurate mean values of sleep and HR estimates in shift workers under naturalistic conditions. Nevertheless, the generally wide limits of agreement hamper the precision of quantifying individual sleep episodes. The value of this consumer-grade multisensor wearable in terms of tackling clinical and research questions could be enhanced with open-source algorithms, raw data access, and the ability to blind participants to their own sleep data.

摘要

背景

多传感器健身追踪器能够在家庭环境中进行睡眠质量的纵向评估,其性能可能优于传统的运动描记术。为了从这些新的工具中受益,客观地评估睡眠以用于临床和研究目的,多传感器可穿戴设备需要经过仔细验证,以符合睡眠多导睡眠图(PSG)的金标准。自然主义研究更倾向于验证。

目的

本研究旨在对 Fitbit Charge 2 在由 59 名接受轮班工作的急救人员和护理人员组成的轮班工作人群中,与便携式家庭 PSG 进行验证。

方法

通过对夜间记录的 PSG 和 Fitbit 时间序列进行数据驱动的对齐,确保两种测量方法之间的可靠比较。使用逐拍分析和 Bland-Altman 图来评估敏感性、特异性、准确性、马修斯相关系数、偏差和一致性限。

结果

睡眠起始和结束、总睡眠时间、快速眼动(REM)睡眠和非快速眼动睡眠阶段 N1+N2 和 N3 的持续时间显示出无偏差的估计值,但一致性限较大。相比之下,专有 Fitbit 算法高估了 REM 睡眠潜伏期 29.4 分钟,并且觉醒后睡眠起始时间(WASO)高估了 37.1 分钟。逐拍分析表明,特异性优于敏感性,WASO(0.82)和 REM 睡眠(0.86)的准确性高于 N1+N2(0.55)和 N3(0.78)睡眠。Fitbit 心率(HR)显示出每分钟 0.9 次的轻微低估(bpm),并且由于与 PSG 相比时间分辨率较低,因此 HR 变化的捕捉能力有限。在 N2、N3 和 REM 睡眠中(0.6-0.7 bpm)的低估程度小于在 N1 睡眠(1.2 bpm)和觉醒(1.9 bpm)中的低估程度,表明存在状态特异性偏差。最后,Fitbit 提示了一种不同于从 PSG 得出的所有睡眠事件持续时间的分布,并显示出非生物性的不连续性,表明分期算法存在潜在的局限性。

结论

我们的结论是,通过遵循仔细的数据处理过程,Fitbit Charge 2 可以在自然条件下为轮班工人提供合理准确的睡眠和 HR 估计值的平均值。然而,总体上较宽的一致性限限制了量化个体睡眠事件的精度。这种消费级多传感器可穿戴设备在解决临床和研究问题方面的价值,可以通过开源算法、原始数据访问以及参与者对自己睡眠数据的盲目性来提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b109/8527385/ae5c530568a8/jmir_v23i10e26476_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验