Suppr超能文献

蒙特利尔认知评估:寻求单一的临界分数可能并非最佳选择。

Montreal Cognitive Assessment: Seeking a Single Cutoff Score May Not Be Optimal.

作者信息

Yang Chongming, Wang Ling, Hu Hui, Dong Xinxiu, Wang Yuncui, Yang Fen

机构信息

Brigham Young University, Provo, UT, USA.

Hubei University of Chinese Medicine, Wuhan, Hubei, China.

出版信息

Evid Based Complement Alternat Med. 2021 Sep 25;2021:9984419. doi: 10.1155/2021/9984419. eCollection 2021.

Abstract

BACKGROUND

Cutoff scores of the Montreal cognitive assessment (MoCA) for screening mild cognitive impairment in older adults differ across the world and within the Chinese culture. It is argued that to seek a cutoff score is essential to classify test participants. It was unknown how taking a classifying approach might reveal the cutoff score for identifying mildly cognitively impaired older adults.

METHODS

Participants, selected from 13 communities in Wuhan, China, were tested with the Chinese version of MoCA and rated with the Activities of Daily Living and the Clinical Dementia Rating scales. Mixture modeling was applied to the data with certain covariates and MoCA sum scores as the outcome of the latent class. Models with different numbers of classes were compared in terms of information criteria, likelihood ratio test, entropy, and interpretability.

RESULTS

A 3-class model (normal, mildly impaired, and severely impaired) was found to fit the data best. The normal class averaged a MoCA score of 24, while the severely impaired class averaged a score below 18. For those cases with MoCA scores above 18 and below 24, it is not certain if they are in the normal or the severely impaired classes.

CONCLUSION

Latent variable classification modeling provides another option to identify MCI in older adults. Some categorically different cases of MCI cannot be captured with any single MoCA sum score. A range of 18-24 MoCA scores might serve as a better screening criterion of MCI. Older adults who scored within this gray zone should be monitored for potential interventions.

摘要

背景

蒙特利尔认知评估量表(MoCA)用于筛查老年人轻度认知障碍的临界值在全球及中国文化内部均存在差异。有人认为,寻找临界值对于对测试参与者进行分类至关重要。目前尚不清楚采用分类方法如何揭示识别轻度认知障碍老年人的临界值。

方法

从中国武汉的13个社区选取参与者,使用中文版MoCA进行测试,并通过日常生活活动量表和临床痴呆评定量表进行评分。将混合模型应用于带有特定协变量的数据,并将MoCA总分作为潜在类别结果。根据信息标准、似然比检验、熵和可解释性对具有不同类别数量的模型进行比较。

结果

发现一个三类模型(正常、轻度受损和重度受损)最适合该数据。正常类别MoCA得分平均为24分,而重度受损类别得分平均低于18分。对于MoCA得分在18分以上且低于24分的情况,不确定他们属于正常类别还是重度受损类别。

结论

潜在变量分类建模为识别老年人的轻度认知障碍提供了另一种选择。任何单一的MoCA总分都无法涵盖某些截然不同的轻度认知障碍病例。MoCA得分在18 - 24分之间可能是更好的轻度认知障碍筛查标准。处于这个灰色区域得分的老年人应接受监测以便进行潜在干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd3d/8487840/3fd3233ef7ce/ECAM2021-9984419.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验