Suppr超能文献

带非易感性分数的长度偏倚和区间删失数据的极大似然估计。

Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction.

机构信息

Department of Statistics, Tunghai University, Xitun District, Taichung, 40704, Taiwan, ROC.

Departments of Public Health Sciences and Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada.

出版信息

Lifetime Data Anal. 2022 Jan;28(1):68-88. doi: 10.1007/s10985-021-09536-2. Epub 2021 Oct 8.

Abstract

Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.

摘要

左截断数据在流行病学队列研究中经常遇到,其中个体是根据特定的横断面抽样标准招募的。长度偏差数据是左截断数据的特殊情况,假设初始事件的发生率遵循均匀泊松过程。在本文中,我们考虑了具有非易感性分数的长度偏差和区间截断数据的分析。我们首先指出了明确界定目标人群的重要性,这取决于对易感个体失效时间的先验知识的支持。给定目标人群,我们进行长度偏差抽样,并从长度偏差样本中得出有效的推断。当没有协变量时,我们表明,在最大化完全似然函数时,只需考虑易感性个体的生存函数的离散版本,其中跳跃点位于截断区间的左端点,并且提出了一种 EM 算法来获得非易感性率和易感性个体生存函数的非参数最大似然估计。我们还开发了一种新的图形方法来评估平稳性假设。当存在协变量时,我们考虑易感性个体生存时间的 Cox 比例风险模型和易感性概率的逻辑回归模型。我们构建了完全似然函数,并通过 EM 算法获得了回归参数的非参数最大似然估计。建立了估计的大样本性质。通过模拟评估方法的性能。将提出的模型和方法应用于早期糖尿病研究的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验