Suppr超能文献

通过生成式人工智能和分子对接技术探索化学空间

Navigating Chemical Space by Interfacing Generative Artificial Intelligence and Molecular Docking.

机构信息

Chemistry Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

Department of Natural Sciences, City University of New York, Baruch College, New York, New York 10010, United States.

出版信息

J Chem Inf Model. 2021 Nov 22;61(11):5589-5600. doi: 10.1021/acs.jcim.1c00746. Epub 2021 Oct 11.

Abstract

Here, we report the implementation and application of a simple, structure-aware framework to generate target-specific screening libraries. Our approach combines advances in generative artificial intelligence (AI) with conventional molecular docking to explore chemical space on the unique physicochemical properties of the active site of a biomolecular target. As a demonstration, we used our framework, which we refer to as sample-and-dock, to construct focused libraries for cyclin-dependent kinase type-2 (CDK2) and the active site of the main protease (M) of the SARS-CoV-2 virus. We envision that the sample-and-dock framework could be used to generate theoretical maps of the chemical space specific to a given target and so provide information about its molecular recognition characteristics.

摘要

在这里,我们报告了一个简单的、结构感知的框架的实现和应用,该框架用于生成针对特定目标的筛选库。我们的方法将生成式人工智能 (AI) 的进展与传统的分子对接相结合,以探索生物分子靶标活性位点独特的物理化学性质上的化学空间。作为一个演示,我们使用了我们的框架,我们称之为采样和对接,来构建针对细胞周期蛋白依赖性激酶 2 (CDK2) 和 SARS-CoV-2 病毒主蛋白酶 (M) 的活性位点的聚焦库。我们设想,采样和对接框架可以用来生成特定于给定目标的化学空间的理论图谱,从而提供有关其分子识别特征的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验