Suppr超能文献

人类通过好奇心驱动的探索来监测学习进度。

Humans monitor learning progress in curiosity-driven exploration.

机构信息

INRIA Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33405, Talence, France.

Department of Neuroscience & The Kavli Institute for Brain Science, Columbia University, 1051 Riverside Drive, Kolb Research Annex, Rm. 569, New York, NY, 10032, USA.

出版信息

Nat Commun. 2021 Oct 13;12(1):5972. doi: 10.1038/s41467-021-26196-w.

Abstract

Curiosity-driven learning is foundational to human cognition. By enabling humans to autonomously decide when and what to learn, curiosity has been argued to be crucial for self-organizing temporally extended learning curricula. However, the mechanisms driving people to set intrinsic goals, when they are free to explore multiple learning activities, are still poorly understood. Computational theories propose different heuristics, including competence measures (e.g., percent correct) and learning progress, that could be used as intrinsic utility functions to efficiently organize exploration. Such intrinsic utilities constitute computationally cheap but smart heuristics to prevent people from laboring in vain on unlearnable activities, while still motivating them to self-challenge on difficult learnable activities. Here, we provide empirical evidence for these ideas by means of a free-choice experimental paradigm and computational modeling. We show that while humans rely on competence information to avoid easy tasks, models that include a learning-progress component provide the best fit to task selection data. These results bridge the research in artificial and biological curiosity, reveal strategies that are used by humans but have not been considered in computational research, and introduce tools for probing how humans become intrinsically motivated to learn and acquire interests and skills on extended time scales.

摘要

好奇心驱动的学习是人类认知的基础。通过使人类能够自主决定何时以及学习什么,好奇心被认为对于自我组织时间延伸的学习课程至关重要。然而,当人们可以自由探索多种学习活动时,驱使他们设定内在目标的机制仍未被很好地理解。计算理论提出了不同的启发式方法,包括能力衡量标准(例如,正确率)和学习进度,这些可以用作内在效用函数,以有效地组织探索。这些内在效用构成了计算上廉价但智能的启发式方法,可以防止人们在无法学习的活动上徒劳无功,同时仍然激励他们在困难的可学习活动上自我挑战。在这里,我们通过自由选择实验范式和计算建模提供了这些想法的经验证据。我们表明,虽然人类依赖能力信息来避免简单的任务,但包括学习进度成分的模型为任务选择数据提供了最佳拟合。这些结果弥合了人工智能和生物好奇心之间的研究差距,揭示了人类使用的策略,但在计算研究中并未考虑这些策略,并引入了工具来探究人类如何在长时间范围内内在地获得学习和获取兴趣和技能的动机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c29/8514490/837173e54f47/41467_2021_26196_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验