Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
Sci Rep. 2021 Oct 13;11(1):20313. doi: 10.1038/s41598-021-99605-1.
Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.
虽然报告了前所未有的敏感性和特异性值,但最近的青光眼检测深度学习模型缺乏决策透明度。在这里,我们提出了一种方法,该方法推动了青光眼检测领域的可解释深度学习以及垂直杯盘比(VCDR)的发展,VCDR 是一个重要的风险因素。我们使用经过一定裁剪策略的眼底图像来训练和评估深度学习模型。我们将裁剪半径定义为图像大小的百分比,以视神经头(ONH)为中心,其等距间隔范围为 10-60%(ONH 裁剪策略)。还应用了裁剪掩模的倒数(周边裁剪策略)。使用原始图像训练的模型在青光眼检测中获得了 0.94 的曲线下面积(AUC)[95%CI 0.92-0.96],并且 VCDR 估计的决定系数(R)等于 77%[95%CI 0.77-0.79]。在没有 ONH 的情况下训练的模型仍然能够获得显著的性能(在最极端的 60%ONH 裁剪设置下,青光眼检测的 AUC 为 0.88[95%CI 0.85-0.90],VCDR 估计的 R 分数为 37%[95%CI 0.35-0.40])。我们的研究结果提供了无可争议的证据,证明深度学习可以从 ONH 以外的眼底图像区域检测青光眼。