Suppr超能文献

眼底图像深度学习可在视盘之外检测青光眼。

Deep learning on fundus images detects glaucoma beyond the optic disc.

机构信息

Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.

Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.

出版信息

Sci Rep. 2021 Oct 13;11(1):20313. doi: 10.1038/s41598-021-99605-1.

Abstract

Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.

摘要

虽然报告了前所未有的敏感性和特异性值,但最近的青光眼检测深度学习模型缺乏决策透明度。在这里,我们提出了一种方法,该方法推动了青光眼检测领域的可解释深度学习以及垂直杯盘比(VCDR)的发展,VCDR 是一个重要的风险因素。我们使用经过一定裁剪策略的眼底图像来训练和评估深度学习模型。我们将裁剪半径定义为图像大小的百分比,以视神经头(ONH)为中心,其等距间隔范围为 10-60%(ONH 裁剪策略)。还应用了裁剪掩模的倒数(周边裁剪策略)。使用原始图像训练的模型在青光眼检测中获得了 0.94 的曲线下面积(AUC)[95%CI 0.92-0.96],并且 VCDR 估计的决定系数(R)等于 77%[95%CI 0.77-0.79]。在没有 ONH 的情况下训练的模型仍然能够获得显著的性能(在最极端的 60%ONH 裁剪设置下,青光眼检测的 AUC 为 0.88[95%CI 0.85-0.90],VCDR 估计的 R 分数为 37%[95%CI 0.35-0.40])。我们的研究结果提供了无可争议的证据,证明深度学习可以从 ONH 以外的眼底图像区域检测青光眼。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053a/8514536/064513709ebf/41598_2021_99605_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验