Suppr超能文献

青光眼疾病活动的测量方法。

Measures of disease activity in glaucoma.

机构信息

Department of Surgery and Cancer, Imperial College London, South Kensington, London, United Kingdom; Department of Chemical Engineering, Imperial College London, South Kensington, London, United Kingdom.

The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom.

出版信息

Biosens Bioelectron. 2022 Jan 15;196:113700. doi: 10.1016/j.bios.2021.113700. Epub 2021 Oct 9.

Abstract

Glaucoma is the leading cause of irreversible blindness globally which significantly affects the quality of life and has a substantial economic impact. Effective detective methods are necessary to identify glaucoma as early as possible. Regular eye examinations are important for detecting the disease early and preventing deterioration of vision and quality of life. Current methods of measuring disease activity are powerful in describing the functional and structural changes in glaucomatous eyes. However, there is still a need for a novel tool to detect glaucoma earlier and more accurately. Tear fluid biomarker analysis and new imaging technology provide novel surrogate endpoints of glaucoma. Artificial intelligence is a post-diagnostic tool that can analyse ophthalmic test results. A detail review of currently used clinical tests in glaucoma include intraocular pressure test, visual field test and optical coherence tomography are presented. The advanced technologies for glaucoma measurement which can identify specific disease characteristics, as well as the mechanism, performance and future perspectives of these devices are highlighted. Applications of AI in diagnosis and prediction in glaucoma are mentioned. With the development in imaging tools, sensor technologies and artificial intelligence, diagnostic evaluation of glaucoma must assess more variables to facilitate earlier diagnosis and management in the future.

摘要

青光眼是全球导致不可逆性失明的主要原因,严重影响生活质量,并造成巨大的经济影响。需要有效的检测方法来尽早发现青光眼。定期进行眼部检查对于早期发现疾病、防止视力和生活质量下降非常重要。目前用于测量疾病活动的方法在描述青光眼眼中的功能和结构变化方面非常有效。但是,仍然需要一种新的工具来更早、更准确地检测青光眼。泪液生物标志物分析和新的成像技术为青光眼提供了新的替代终点。人工智能是一种用于分析眼科测试结果的诊断后工具。本文详细回顾了目前用于青光眼诊断的临床测试,包括眼压测试、视野测试和光学相干断层扫描。本文强调了用于青光眼测量的先进技术,这些技术可以识别特定的疾病特征,以及这些设备的机制、性能和未来前景。还提到了人工智能在青光眼诊断和预测中的应用。随着成像工具、传感器技术和人工智能的发展,青光眼的诊断评估必须评估更多变量,以促进未来的早期诊断和管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验