Suppr超能文献

用于学习能量守恒动力系统的变分积分器图网络。

Variational integrator graph networks for learning energy-conserving dynamical systems.

作者信息

Desai Shaan A, Mattheakis Marios, Roberts Stephen J

机构信息

Machine Learning Research Group, University of Oxford Eagle House, Oxford OX2 6ED, United Kingdom and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Phys Rev E. 2021 Sep;104(3-2):035310. doi: 10.1103/PhysRevE.104.035310.

Abstract

Recent advances show that neural networks embedded with physics-informed priors significantly outperform vanilla neural networks in learning and predicting the long-term dynamics of complex physical systems from noisy data. Despite this success, there has only been a limited study on how to optimally combine physics priors to improve predictive performance. To tackle this problem we unpack and generalize recent innovations into individual inductive bias segments. As such, we are able to systematically investigate all possible combinations of inductive biases of which existing methods are a natural subset. Using this framework we introduce variational integrator graph networks-a novel method that unifies the strengths of existing approaches by combining an energy constraint, high-order symplectic variational integrators, and graph neural networks. We demonstrate, across an extensive ablation, that the proposed unifying framework outperforms existing methods, for data-efficient learning and in predictive accuracy, across both single- and many-body problems studied in the recent literature. We empirically show that the improvements arise because high-order variational integrators combined with a potential energy constraint induce coupled learning of generalized position and momentum updates which can be formalized via the partitioned Runge-Kutta method.

摘要

最近的进展表明,嵌入物理先验知识的神经网络在从噪声数据中学习和预测复杂物理系统的长期动力学方面明显优于普通神经网络。尽管取得了这一成功,但关于如何最优地结合物理先验知识以提高预测性能的研究仍然有限。为了解决这个问题,我们将最近的创新成果解包并归纳为各个归纳偏差部分。这样,我们能够系统地研究归纳偏差的所有可能组合,而现有方法只是其中的一个自然子集。利用这个框架,我们引入了变分积分器图网络——一种通过结合能量约束、高阶辛变分积分器和图神经网络来统一现有方法优势的新方法。我们通过广泛的消融实验证明,所提出的统一框架在数据高效学习和预测准确性方面优于现有方法,涵盖了近期文献中研究的单体和多体问题。我们通过实验表明,性能的提升源于高阶变分积分器与势能约束相结合,诱导了广义位置和动量更新的耦合学习,这可以通过分区龙格 - 库塔方法形式化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验