Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Hum Gene Ther. 2021 Oct;32(19-20):1029-1043. doi: 10.1089/hum.2021.148.
Immune cell-based therapies can induce potent antitumor effects but are also often associated with severe toxicities. We previously developed a PD-1-based small molecule-regulated reversible T cell activation switch to control the activity of cellular immunotherapy products. This chemically regulated and SH2-delivered-inhibitory tail (CRASH-IT) switch relies on the noncovalent interaction of switch SH2 domains with phosphorylated ITAM motifs in either chimeric antigen receptors or T cell receptors. After this interaction, the immunoreceptor tyrosine-based inhibition motif/switch motif (ITIM/ITSM) containing PD-1 domain present in the CRASH-IT switch induces robust inhibition of T cell signaling, and CRASH-IT-mediated suppression of T cell activity can be reversed by small molecule-induced switch proteolysis. With the aim to develop improved second-generation switch systems, we here analyze the possibility space of both the immune cell receptor docking and inhibitory signaling domains that allow control over T cell activity. Importantly, these analyses demonstrate that the inhibitory domains that most potently suppress antigen receptor signaling in primary human T cells are not derived from inhibitory receptors, such as PD-1 and BTLA, that are endogenously expressed in T cells, but include ITIM/ITSM containing inhibitory domains derived from receptors present in myeloid cells. In addition, we demonstrate that physical proximity of the inhibitory domain to the antigen receptor is crucial to efficiently suppress T cell activation, as only switch designs that employ SH2 domains directly interacting with ITAM motifs in antigen receptors efficiently and reversibly inhibit T cell functionality. These data demonstrate the flexible and interchangeable nature of immune cell signaling domains, and inform the design of a synthetic proximity-based switch system with a superior dynamic range.
免疫细胞疗法可以诱导强烈的抗肿瘤效应,但也常伴有严重的毒性。我们之前开发了一种基于 PD-1 的小分子调控可逆 T 细胞激活开关,以控制细胞免疫治疗产品的活性。这种化学调控和 SH2 传递抑制尾(CRASH-IT)开关依赖于开关 SH2 结构域与嵌合抗原受体或 T 细胞受体中的磷酸化 ITAM 基序的非共价相互作用。在这种相互作用之后,CRASH-IT 开关中包含 PD-1 结构域的免疫受体酪氨酸基抑制基序/开关基序(ITIM/ITSM)诱导 T 细胞信号的强烈抑制,并且 CRASH-IT 介导的 T 细胞活性抑制可以通过小分子诱导的开关蛋白水解来逆转。为了开发改进的第二代开关系统,我们在此分析允许控制 T 细胞活性的免疫细胞受体对接和抑制信号结构域的可能性空间。重要的是,这些分析表明,在原代人 T 细胞中最有效地抑制抗原受体信号的抑制结构域不是源自内源性表达于 T 细胞中的抑制受体,如 PD-1 和 BTLA,而是包括源自髓样细胞中存在的受体的含有 ITIM/ITSM 的抑制结构域。此外,我们证明抑制结构域与抗原受体的物理接近对于有效地抑制 T 细胞激活至关重要,因为只有采用 SH2 结构域直接与抗原受体中的 ITAM 基序相互作用的开关设计才能有效地和可逆地抑制 T 细胞功能。这些数据表明免疫细胞信号结构域具有灵活可互换的性质,并为设计具有优越动态范围的基于合成接近的开关系统提供了信息。