Servei Català de la Salut (CatSalut), Barcelona, Spain.
Digitalization for the Sustainability of the Healthcare System (DS3), Barcelona, Spain.
BMC Public Health. 2021 Oct 18;21(1):1881. doi: 10.1186/s12889-021-11922-2.
Multimorbidity measures are useful for resource planning, patient selection and prioritization, and factor adjustment in clinical practice, research, and benchmarking. We aimed to compare the explanatory performance of the adjusted morbidity group (GMA) index in predicting relevant healthcare outcomes with that of other quantitative measures of multimorbidity.
The performance of multimorbidity measures was retrospectively assessed on anonymized records of the entire adult population of Catalonia (North-East Spain). Five quantitative measures of multimorbidity were added to a baseline model based on age, gender, and socioeconomic status: the Charlson index score, the count of chronic diseases according to three different proposals (i.e., the QOF, HCUP, and Karolinska institute), and the multimorbidity index score of the GMA tool. Outcomes included all-cause death, total and non-scheduled hospitalization, primary care and ER visits, medication use, admission to a skilled nursing facility for intermediate care, and high expenditure (time frame 2017). The analysis was performed on 10 subpopulations: all adults (i.e., aged > 17 years), people aged > 64 years, people aged > 64 years and institutionalized in a nursing home for long-term care, and people with specific diagnoses (e.g., ischemic heart disease, cirrhosis, dementia, diabetes mellitus, heart failure, chronic kidney disease, and chronic obstructive pulmonary disease). The explanatory performance was assessed using the area under the receiving operating curves (AUC-ROC) (main analysis) and three additional statistics (secondary analysis).
The adult population included 6,224,316 individuals. The addition of any of the multimorbidity measures to the baseline model increased the explanatory performance for all outcomes and subpopulations. All measurements performed better in the general adult population. The GMA index had higher performance and consistency across subpopulations than the rest of multimorbidity measures. The Charlson index stood out on explaining mortality, whereas measures based on exhaustive definitions of chronic diagnostic (e.g., HCUP and GMA) performed better than those using predefined lists of diagnostics (e.g., QOF or the Karolinska proposal).
The addition of multimorbidity measures to models for explaining healthcare outcomes increase the performance. The GMA index has high performance in explaining relevant healthcare outcomes and may be useful for clinical practice, resource planning, and public health research.
多病种衡量标准可用于资源规划、患者选择和优先级划分,以及临床实践、研究和基准测试中的因素调整。我们旨在比较调整后的病种组(GMA)指数在预测相关医疗保健结果方面的解释性能与其他定量多病种衡量标准的性能。
使用加泰罗尼亚(西班牙东北部)全体成年人的匿名记录,回顾性评估多种病种衡量标准的性能。在基于年龄、性别和社会经济地位的基线模型中添加了五种定量的多病种衡量标准:Charlson 指数评分、根据三种不同建议(即 QOF、HCUP 和 Karolinska 研究所)计算的慢性疾病数量,以及 GMA 工具的多病种指数评分。结果包括全因死亡、总住院和非计划性住院、初级保健和急诊就诊、药物使用、进入中级护理的熟练护理机构住院和高支出(时间范围 2017 年)。分析针对 10 个人群进行:所有成年人(即年龄 > 17 岁)、年龄 > 64 岁的人、年龄 > 64 岁且长期居住在疗养院的人,以及患有特定诊断的人(例如,缺血性心脏病、肝硬化、痴呆、糖尿病、心力衰竭、慢性肾脏病和慢性阻塞性肺疾病)。使用接收者操作曲线下的面积(AUC-ROC)(主要分析)和三个附加统计量(次要分析)评估解释性能。
成年人人口包括 6224316 人。向基线模型中添加任何一种多病种衡量标准都提高了所有结果和人群的解释性能。所有测量结果在一般成年人群中表现更好。GMA 指数在不同人群中的性能和一致性都高于其他多种病种衡量标准。Charlson 指数在解释死亡率方面表现突出,而基于慢性诊断详尽定义的衡量标准(例如,HCUP 和 GMA)比使用预定义诊断列表的衡量标准(例如,QOF 或 Karolinska 建议)表现更好。
向解释医疗保健结果的模型中添加多病种衡量标准可以提高性能。GMA 指数在解释相关医疗保健结果方面具有较高的性能,可能对临床实践、资源规划和公共卫生研究有用。