Suppr超能文献

机器学习方法可提高多民族患者二级心血管疾病预防的风险分层。

Machine learning approaches improve risk stratification for secondary cardiovascular disease prevention in multiethnic patients.

机构信息

Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA.

Department of Electrical Engineering, Stanford University, Stanford, California, USA.

出版信息

Open Heart. 2021 Oct;8(2). doi: 10.1136/openhrt-2021-001802.

Abstract

OBJECTIVES

Identifying high-risk patients is crucial for effective cardiovascular disease (CVD) prevention. It is not known whether electronic health record (EHR)-based machine-learning (ML) models can improve CVD risk stratification compared with a secondary prevention risk score developed from randomised clinical trials (Thrombolysis in Myocardial Infarction Risk Score for Secondary Prevention, TRS 2°P).

METHODS

We identified patients with CVD in a large health system, including atherosclerotic CVD (ASCVD), split into 80% training and 20% test sets. A rich set of EHR patient features was extracted. ML models were trained to estimate 5-year CVD event risk (random forests (RF), gradient-boosted machines (GBM), extreme gradient-boosted models (XGBoost), logistic regression with an L penalty and L penalty (Lasso)). ML models and TRS 2°P were evaluated by the area under the receiver operating characteristic curve (AUC).

RESULTS

The cohort included 32 192 patients (median age 74 years, with 46% female, 63% non-Hispanic white and 12% Asian patients and 23 475 patients with ASCVD). There were 4010 events over 5 years of follow-up. ML models demonstrated good overall performance; XGBoost demonstrated AUC 0.70 (95% CI 0.68 to 0.71) in the full CVD cohort and AUC 0.71 (95% CI 0.69 to 0.73) in patients with ASCVD, with comparable performance by GBM, RF and Lasso. TRS 2°P performed poorly in all CVD (AUC 0.51, 95% CI 0.50 to 0.53) and ASCVD (AUC 0.50, 95% CI 0.48 to 0.52) patients. ML identified nontraditional predictive variables including education level and primary care visits.

CONCLUSIONS

In a multiethnic real-world population, EHR-based ML approaches significantly improved CVD risk stratification for secondary prevention.

摘要

目的

识别高危患者对于有效的心血管疾病(CVD)预防至关重要。目前尚不清楚基于电子健康记录(EHR)的机器学习(ML)模型是否可以改善 CVD 风险分层,与从随机临床试验开发的二级预防风险评分相比(二级预防溶栓心肌梗死风险评分,TRS 2°P)。

方法

我们在一个大型医疗系统中确定了 CVD 患者,包括动脉粥样硬化性 CVD(ASCVD),分为 80%的训练集和 20%的测试集。提取了丰富的 EHR 患者特征。使用随机森林(RF)、梯度提升机(GBM)、极端梯度提升模型(XGBoost)、具有 L 罚分和 L 罚分的逻辑回归(Lasso)等 ML 模型来估计 5 年 CVD 事件风险。通过接收者操作特征曲线下的面积(AUC)评估 ML 模型和 TRS 2°P。

结果

该队列包括 32192 名患者(中位年龄 74 岁,女性占 46%,非西班牙裔白人占 63%,亚裔患者占 12%,23475 名 ASCVD 患者)。在 5 年的随访中有 4010 例事件。ML 模型表现出良好的整体性能;XGBoost 在全 CVD 队列中 AUC 为 0.70(95%CI 0.68 至 0.71),在 ASCVD 患者中 AUC 为 0.71(95%CI 0.69 至 0.73),GBM、RF 和 Lasso 的性能相当。TRS 2°P 在所有 CVD(AUC 0.51,95%CI 0.50 至 0.53)和 ASCVD(AUC 0.50,95%CI 0.48 至 0.52)患者中表现不佳。ML 确定了非传统预测变量,包括教育水平和初级保健就诊次数。

结论

在一个多民族的真实世界人群中,基于 EHR 的 ML 方法显著改善了二级预防的 CVD 风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f19/8527119/fd6c9a3a1d90/openhrt-2021-001802f01.jpg

相似文献

2
Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population.
NPJ Digit Med. 2020 Sep 23;3:125. doi: 10.1038/s41746-020-00331-1. eCollection 2020.
3
Machine learning model for cardiovascular disease prediction in patients with chronic kidney disease.
Front Endocrinol (Lausanne). 2024 May 28;15:1390729. doi: 10.3389/fendo.2024.1390729. eCollection 2024.

引用本文的文献

3
Unlocking the link: predicting cardiovascular disease risk with a focus on airflow obstruction using machine learning.
BMC Med Inform Decis Mak. 2025 Feb 3;25(1):50. doi: 10.1186/s12911-025-02885-0.
4
Artificial Intelligence in Ischemic Heart Disease Prevention.
Curr Cardiol Rep. 2025 Feb 1;27(1):44. doi: 10.1007/s11886-025-02203-0.
5
Uses of Social Determinants of Health Data to Address Cardiovascular Disease and Health Equity: A Scoping Review.
J Am Heart Assoc. 2023 Nov 7;12(21):e030571. doi: 10.1161/JAHA.123.030571. Epub 2023 Nov 6.

本文引用的文献

1
Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population.
NPJ Digit Med. 2020 Sep 23;3:125. doi: 10.1038/s41746-020-00331-1. eCollection 2020.
2
Trends in Recurrent Coronary Heart Disease After Myocardial Infarction Among US Women and Men Between 2008 and 2017.
Circulation. 2021 Feb 16;143(7):650-660. doi: 10.1161/CIRCULATIONAHA.120.047065. Epub 2020 Sep 21.
4
The myth of generalisability in clinical research and machine learning in health care.
Lancet Digit Health. 2020 Sep;2(9):e489-e492. doi: 10.1016/S2589-7500(20)30186-2. Epub 2020 Aug 24.
5
Failure of Traditional Risk Factors to Adequately Predict Cardiovascular Events in Older Populations.
J Am Geriatr Soc. 2020 Apr;68(4):754-761. doi: 10.1111/jgs.16329. Epub 2020 Jan 20.
6
Finding missed cases of familial hypercholesterolemia in health systems using machine learning.
NPJ Digit Med. 2019 Apr 11;2:23. doi: 10.1038/s41746-019-0101-5. eCollection 2019.
7
Atherosclerotic Cardiovascular Disease Risk Prediction in Disaggregated Asian and Hispanic Subgroups Using Electronic Health Records.
J Am Heart Assoc. 2019 Jul 16;8(14):e011874. doi: 10.1161/JAHA.118.011874. Epub 2019 Jul 11.
8
Secondary prevention of cardiovascular disease: Time to rethink stratification of disease severity?
Eur J Prev Cardiol. 2019 Nov;26(16):1778-1780. doi: 10.1177/2047487319850957. Epub 2019 May 15.
9
Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data.
Circ Cardiovasc Qual Outcomes. 2019 Mar;12(3):e004741. doi: 10.1161/CIRCOUTCOMES.118.004741.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验