Suppr超能文献

皮质内弥散张量成像对额颞叶变性的结构变化特征。

Intracortical diffusion tensor imaging signature of microstructural changes in frontotemporal lobar degeneration.

机构信息

Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.

Oxford Brain Diagnostics Limited, Oxford, UK.

出版信息

Alzheimers Res Ther. 2021 Oct 22;13(1):180. doi: 10.1186/s13195-021-00914-4.

Abstract

BACKGROUND

Frontotemporal lobar degeneration (FTLD) is a neuropathological construct with multiple clinical presentations, including the behavioural variant of frontotemporal dementia (bvFTD), primary progressive aphasia-both non-fluent variant (nfvPPA) and semantic variant (svPPA)-progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), characterised by the deposition of abnormal tau protein in the brain. A major challenge for treating FTLD is early diagnosis and accurate discrimination among different syndromes. The main goal here was to investigate the cortical architecture of FTLD syndromes using cortical diffusion tensor imaging (DTI) analysis and to test its power to discriminate between different clinical presentations.

METHODS

A total of 271 individuals were included in the study: 87 healthy subjects (HS), 31 semantic variant primary progressive aphasia (svPPA), 37 behavioural variant (bvFTD), 30 non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), 47 PSP Richardson's syndrome (PSP-RS) and 39 CBS cases. 3T MRI T1-weighted images and DTI scans were analysed to extract three cortical DTI derived measures (AngleR, PerpPD and ParlPD) and mean diffusivity (MD), as well as standard volumetric measurements. Whole brain and regional data were extracted. Linear discriminant analysis was used to assess the group discrimination capability of volumetric and DTI measures to differentiate the FTLD syndromes. In addition, in order to further investigate differential diagnosis in CBS and PSP-RS, a subgroup of subjects with autopsy confirmation in the training cohort was used to select features which were then tested in the test cohort. Three different challenges were explored: a binary classification (controls vs all patients), a multiclass classification (HS vs bvFTD vs svPPA vs nfvPPA vs CBS vs PSP-RS) and an additional binary classification to differentiate CBS and PSP-RS using features selected in an autopsy confirmed subcohort.

RESULTS

Linear discriminant analysis revealed that PerpPD was the best feature to distinguish between controls and all patients (ACC 86%). PerpPD regional values were able to classify correctly the different FTLD syndromes with an accuracy of 85.6%. The PerpPD and volumetric values selected to differentiate CBS and PSP-RS patients showed a classification accuracy of 85.2%.

CONCLUSIONS

(I) PerpPD achieved the highest classification power for differentiating healthy controls and FTLD syndromes and FTLD syndromes among themselves. (II) PerpPD regional values could provide an additional marker to differentiate FTD, PSP-RS and CBS.

摘要

背景

额颞叶变性(FTLD)是一种具有多种临床表现的神经病理学结构,包括行为变异型额颞叶痴呆(bvFTD)、原发性进行性失语症-非流利型变异(nfvPPA)和语义型变异(svPPA)、进行性核上性麻痹(PSP)和皮质基底节综合征(CBS),其特征是大脑中异常tau 蛋白的沉积。治疗 FTLD 的主要挑战是早期诊断和准确区分不同的综合征。这里的主要目标是使用皮质扩散张量成像(DTI)分析研究 FTLD 综合征的皮质结构,并测试其区分不同临床表现的能力。

方法

共有 271 人参与了这项研究:87 名健康受试者(HS)、31 名语义变异原发性进行性失语症(svPPA)、37 名行为变异(bvFTD)、30 名非流利/语法障碍原发性进行性失语症(nfvPPA)、47 名 PSP Richardson 综合征(PSP-RS)和 39 名 CBS 病例。分析了 3T MRI T1 加权图像和 DTI 扫描,以提取三个皮质 DTI 衍生测量值(AngleR、PerpPD 和 ParlPD)和平均扩散系数(MD)以及标准体积测量值。提取了全脑和区域数据。使用线性判别分析评估容积和 DTI 测量值区分 FTLD 综合征的组间判别能力。此外,为了进一步研究 CBS 和 PSP-RS 的鉴别诊断,在训练队列中使用了一组经尸检证实的受试者,以选择特征,然后在测试队列中进行测试。探索了三种不同的挑战:二进制分类(对照与所有患者)、多类分类(HS 与 bvFTD 与 svPPA 与 nfvPPA 与 CBS 与 PSP-RS)和使用尸检证实的亚组中选择的特征进行的另一个二进制分类,以区分 CBS 和 PSP-RS。

结果

线性判别分析显示,PerpPD 是区分对照组和所有患者(ACC 86%)的最佳特征。PerpPD 区域值能够以 85.6%的准确率正确分类不同的 FTLD 综合征。用于区分 CBS 和 PSP-RS 患者的 PerpPD 和容积值显示出 85.2%的分类准确性。

结论

(I)PerpPD 为区分健康对照者和 FTLD 综合征以及 FTLD 综合征本身提供了最高的分类能力。(II)PerpPD 区域值可以提供一个额外的标志物来区分 FTD、PSP-RS 和 CBS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/978d/8539736/3eda37b39531/13195_2021_914_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验