Suppr超能文献

COVID-19感染的预测因素:一项住院患者的患病率研究。

Predictors of COVID-19 Infection: A Prevalence Study of Hospitalized Patients.

作者信息

Tu Huilan, Zhao Hong, Su Junwei, Wu Wenrui, Xu Kaijin, Hu Jianhua, Zhang Xuan, Yang Meifang, Sheng Jifang

机构信息

State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.

出版信息

Can J Infect Dis Med Microbiol. 2021 Oct 13;2021:6213450. doi: 10.1155/2021/6213450. eCollection 2021.

Abstract

AIM

To find the predictors of coronavirus disease 2019 (COVID-19) in hospitalized patients.

METHODS

A prevalence study compared the characteristics of COVID-19 patients with non-COVID-19 patients from January 19, 2020, to February 18, 2020, during the COVID-19 outbreak. Laboratory test results and pulmonary chest imaging of confirmed COVID-19 and non-COVID-19 patients were collected by retrieving medical records in our center.

RESULTS

96 COVID-19 patients and 122 non-COVID-19 patients were enrolled in this study. COVID-19 patients were older (53 vs. 39;  < 0.001) and had higher body mass index (BMI) than non-COVID-19 group (24.21 ± 3.51 vs. 23.00 ± 3.27,  = 0.011); however, differences in gender were not observed between the two groups. Logistic regression analysis showed that exposure history (OR: 23.34,  < 0.001), rhinorrhea (odds radio (OR): 0.12,  = 0.006), alanine aminotransferase (ALT) (OR: 1.03,  = 0.049), lactate dehydrogenase (LDH) (OR: 1.01,  = 0.020), lymphocyte (OR: 0.27,  = 0.007), and bilateral involvement on chest CT imaging (OR: 23.01,  < 0.001) were independent risk factors for COVID-19. Moreover, bilateral involvement on chest CT imaging (AUC = 0.904,  < 0.001) had significantly higher AUC than others in predicting COVID-19.

CONCLUSIONS

Exposure history, elevated ALT and LDH, absence of rhinorrhea, lymphopenia, and bilateral involvement on chest CT imaging provide robust evidence for the diagnosis of COVID-19, especially in resource-limited conditions where nucleic acid detection is not readily available.

摘要

目的

寻找住院患者中2019冠状病毒病(COVID-19)的预测因素。

方法

一项患病率研究比较了2020年1月19日至2020年2月18日COVID-19疫情期间COVID-19患者与非COVID-19患者的特征。通过检索本中心的病历收集确诊的COVID-19和非COVID-19患者的实验室检查结果和胸部影像学资料。

结果

本研究纳入了96例COVID-19患者和122例非COVID-19患者。COVID-19患者年龄更大(53岁对39岁;P<0.001),且体重指数(BMI)高于非COVID-19组(24.21±3.51对23.00±3.27,P=0.011);然而,两组之间未观察到性别差异。逻辑回归分析显示,接触史(比值比(OR):23.34,P<0.001)、流涕(比值比(OR):0.12,P=0.006)、谷丙转氨酶(ALT)(OR:1.03,P=0.049)、乳酸脱氢酶(LDH)(OR:1.01,P=0.020)、淋巴细胞(OR:0.27,P=0.007)以及胸部CT成像显示双侧受累(OR:23.01,P<0.001)是COVID-19的独立危险因素。此外,胸部CT成像显示双侧受累(曲线下面积(AUC)=0.904,P<0.001)在预测COVID-19方面的AUC显著高于其他因素。

结论

接触史、ALT和LDH升高、无流涕、淋巴细胞减少以及胸部CT成像显示双侧受累为COVID-19的诊断提供了有力证据,尤其是在核酸检测不易获得的资源有限的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c87f/8528614/88b24f788591/CJIDMM2021-6213450.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验